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mvis = e*m = mean number of interactions per Bunch 
crossing seen by detector

Cross section seen by detector
(measured)

➢ svis is determined in dedicated fills based on beam parameters 

Luminosity Basics



Luminosity calibration with van der Meer method

▸ beams are scanned across each other and luminosity 
recorded in luminometers [1],
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▸ beam-related systematic effects have to be considered. 

HB2023

▸ beams overlap width can be extracted Sx,y, to calculate 
the transverse luminous area.

▸ aimed to obtain the detector-specific visible cross-section 
𝜎𝑣𝑖𝑠

▸ rate can be correlated with instantaneous luminosity from 
beam parameters: 



Motivation - Introduction

4

• precision luminosity measurement requires a thorough understanding of 
beam systematics     

• of particular importance: detailed studies for corrections and uncertainties 
related to the Beam-Beam (BB) interaction

• BB optical distortion corrections underestimated in Run 1-2 

• BB deflection known, measured very well and calculated analytical [3b]

• year-long studies to derive new model and strategy for systematic 
uncertainties, resulted in nice publication [3] 

• leading to the shift of the absolute integrated                                 
luminosity by ~ -1% [2] (compared to pre-2021)

HB2023

in preliminary Run-2 ATLAS results ~1.5% 
correction with 0.2% uncertainty (!)

in legacy Run-2 ATLAS results ~0.5% 
correction with 0.3% uncertainty 

collaborative work of all LHC 
experiments within the LLCMWG

https://cds.cern.ch/record/2677054/files/ATLAS-CONF-2019-021.pdf
https://arxiv.org/pdf/2212.09379.pdf


Beam-beam interaction
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HB2023

• BB force : electromagnetic interactions of the two charged beams

• Change in orbit [3b]

• Change in optical properties [3]

• LHC specific vdM with multiple experiments in collision

• BB parameter describes the linearised force for small amplitude 

particles, separation introduces more complex effects

• COMBI [4] code used to model self-consistently the interactions to 

understand and quantify the bias to absolute luminosity measurements 

with multiple IPs

• Provide a set of corrections to be used in detectors luminosity analysis : 

• vdM analysis of absolute calibration of luminometers (x<0.01/IP)

• Luminometers non-linearities in high pile-up regime (x=0.01/IP)



BB bias to luminosity break down for single IP:
Beam-beam force will modify the luminosity while 

scanning introducing different effects.

Studied separately in terms of:

• Optical effects including dynamic-beta, non linear 

effects and overlap changes (non-gaussianity and 

non-factorisation)

• Orbit deflection calculated from Bassetti-Erskine 

formula [5]

• In addition while one experiment is scanning the 

others acquire luminosity and introduce further BB 

effects:

• Change in tunes

• Amplitude dependent beta-beating

• Phase advance dependency…

Measurements in VdM
CERN-ACC-NOTE-2013-0006

J. Wenninge, Kozanecki, Pieloni

Beam-beam interaction



Multi-collision study for vdM calibration

• focus on the additional collisions at interaction points 
(IPs) other than the scanning IP

• separate corrections for beam-separation dependent 
deflection-induced orbit shift and optical distortion (aka 
dynamic-beta)
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Additional collisions → IPs are coupled via BB

• additional betatron tune shift [6] 

• Amplitude dependent beta-beating propagated

• Propagates from one Ip to the others: phase advance 
between IPs causes modulation calibration constant [7]

whole bunch motion = coherent spectra

HB2023

1 IP

2 IPs (scanning + non-
scanning)

phase-
modulated 
calibration 

constant bias

Δ𝑄 ∼ 𝜉
Δ𝑄 ∼ 2 × 𝜉



Mimicking multi-IP impact 
luminosity bias correction model based on 
the single-IP parametrization 

• dependent on beams separation, BB 
parameter and tunes [3]

• effective multi-IP tune shift can be used to 
obtain the equivalent calibration                                                                                                   
constant bias (mimic the extra HO with a 
tune shift 0.5*x/NSIP)

• simple scaling law derived from strong-
strong simulations

• valid for all LHC IPs 

• verified in simulation for vdM regime x~0.004/IP
(𝜉 < 0.01)
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single-IP 
calculation

full multi-collision 
simulation

scanning-IP only
scanning-IP + 3 extra 
collisions

tune shift for 
single-IP 
calculation 

If you cannot measure it, it doesn’t exist!



Beam-beam 
interaction
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Phase optimisation validated with optics measurements:

Measured beta-beating 
along the LHC ring from 

the knob

Measured beta-beating 
along the LHC ring from 
the knob with reference 

to the MADX model 
predictions 

Benchmark experiment 

• Test designed especially to measure the BB effects

• phase advance between IP1 & IP5 optimised so 
as to maximize the effect on luminosity at the 
observer IP at injection energy (1 → 3%)

• lattice validated (R. Tomas, T. Person, OP 
crew)

Multiple instruments were used to measure the BB 
effects on: 

• luminosity from ATLAS and CMS luminometers 

• tune spectra from ADT, BBQ 

• transverse beam sizes with synch. light monitors 

and wire scanners

• orbit at the IPs with BPMs

BB impact on luminosity as a function of the 
phase advance between the IPs

W. Yi EPFL TPIV projects 2022



Benchmark experiment 
Series of tests:

• Scanning IP : in and out collision and transverse scan

→ propagation 

• Witness IP: in HO collision, observation point to see bias on luminosity

Tune shifts and coherent modes

• Tune spectra and coherent modes

• Tune shift versus separation scan
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Data COMBI simulated 

coherent modes 

𝜎 mode𝜋 mode

← single collision tune shift 

Tune shift induced by BB during separation scan in horizontal plane at one IP, 
while the other is colliding head-on as measured by the ADT ObsBox[9]

W. Yi



Benchmark experiment 

CMS luminosity change as a function of the ATLAS collision

x = 0.01/IP x = 0.006/IP

x = 0.007/IP

~4% ~2%

Luminosity observations 

separation at 
another location

repetitive change of 
configuration

observer

ATLAS luminosity change as a function of the 
CMS collision

• Luminosity bias due to BB has been observed in both 
observing IPS and the resulting effect is in within 
expectations

• The expectation varies with xbb

• Phase advance impact to the observed effect visible



Aim: validation of the correction strategy used in the vdM
calibration 

• support for the multi-IP modelling

• scaling law with BB parameter verified

• observations of BB-induced changes during a separation 
scan

• first measurement of the impact of BB effects on the 
luminosity in LHC
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Luminosity enhancement at 
head-on configuration caused 
by additional BB interaction 
(at another IP) as measured 
by both ATLAS and CMS 
(observer IP), as a function of 
the single-IP BB parameter, 
compared to COMBI 
simulation predictions

Beam width reduction 
caused by moving IP1 from 
fully separated to head-on 
position, as measured by 
synchrotron light monitor 
[8] and compared to COMBI  

presented at EPS-HEP 2023Benchmark experiment 

ATLAS luminosity change as a function of separation step

2.5% effect



Extrapolation to nominal conditions 

At nominal conditions the luminosity measurement can be biased 
with a non-linearity of a detector response over a wide pile-up range 

• BB simulations useful to produce dedicated corrections -
minimising the associated extra systematic from bunch by bunch 
differences

• Tested/used for a specific measurement fill (BSRT calibration fill 
2023)

13 EPS HEP 2023

𝜎𝑣𝑖𝑠 = 2𝜋
𝜇𝑝𝑘

𝑛1𝑛2
Σ𝑥Σ𝑦



Impact of BB on detector non-linearity 

Proof of concept (EPS-HEP 2023 J. Wanczyk)

• apparent BB-induced slope - removed with BB 
simulation predictions (x~0.008)

• fundamental to understand for HL-LHC
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Pile-up (PU) = ~7 x Single Bunch 
Instantaneous Luminosity (SBIL)

HB2023

increasing BB parameter
perfectly linear 
luminometer = flat 
response across SBIL

Independent measurement → further studies needed for precise measurement

Other luminometers behave differently



Conclusions 
• Extensive simulation campaign of BB effects on the luminosity led to a much better understanding, minimising the related 

systematic uncertainty on absolute luminosity calibrations at LHC exp

• Improved corrections 

• optical effect shifted pre-2021 central values by -1% - improved results from ATLAS already published [2], CMS results on 
the way 

• by accounting for the multiple collisions effects - additional 0.4% correction for typical vdM BB parameter x~0.004/IP

• Dedicated BB experiment at the LHC allowed to validate some key aspects of the simulation model at the % level

• First measurement of the beam-beam-induced biases on luminosity 
• agreement with the simulation to the level of 0.1%

• Beam-beam simulations allow for dedicated corrections at the physics conditions (dedicated mini scan at x~0.01/IP)

• Possible to remove the apparent beam-beam induced bias to detector response →measuring intrinsic detector non-linear
response in an independent way
• luminometers non-linearities are expected to be one of the main challenges at HL-LHC 

• Numerical simulations are invaluable tools to improve understanding, quantify effects and push higher precisions → full 
exploitation of LHC luminosity and learn more in preparation for the high pile-up era

• BB induced Lumi enhancement by tuning the IPs can be applied also to LHC and HL-LHC case → 3-7%  depending on 
leveling at IPs
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Thank you!
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Uncertainties from BB

18



Simulation challenges in physics conditions
• not only measurement but also 

simulation challenge

• changes with respect to the vdM regime:

• pile-up x 100
• higher BB parameter x 1.5-2
• non-zero crossing-angle

• trains - long-range interactions
• hour-glass effect

• using 6D BB strong-strong soft Gaussian 
[9]

• developed sliced luminosity integrator 
for full overlap description along the 
bunch during collision 
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small 𝛽∗ →non-constant transverse  beam widths 

multiple long-range interactions around the IP

longitudinal description of the kick 
with the crossing-angle


