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Charge exchange beam injection of H- beam into the Ring.

1.3 GeV H- beam
2MW beam power

Thin carbon stripping foil. Foil Injection.

H- →   p+ + 2e-

H- →   p+ + 2e-

h𝝼
B-field

Laser

Laser assisted charge exchange 
injection (LACE)

Issues with Foils (courtesy of N. Evans)

H-
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Photoionization of H- and H0.

𝞼H- = 4.0×10-21 m2 for 800 nm

𝞼1s = 6.3×10-22 m2 for 91 nm

𝞼2p = 1.7×10-21 m2 for 364 nm

𝞼3p = 3.3×10-21 m2 for 820 nm

H1s

H2p

H3p

H-

p+

e-

e-

bound (discrete) states

Continuum states

hν

Continuum states

Discrete states

e-

e-

rbeam= 0.5mm

lb= 100 ps

Energy=35mJ for 99% stripping

(requires ~500 times more laser 

power than existing laser) 

Gaussian laser-beam interaction

355nm
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Lorentz stripping of hadron beams. 1GeV H0, H- beams

40 Tesla magnet !

H- → H0 + e-

H0
1s → p+ + e- H0

3p → p+ + e-
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Practical scheme of laser stripping (I. Yamane 1998, V. Danilov, 2003)

H- H0(1s)
H0*(3p)

1 GeV beam

e-

e-

p+

N

S N

S

1st step:
Lorentz stripping

H- → H0 + e-

2nd step:
laser resonant excitation

H0 +h𝝼→ H0*

3rd step:
Lorentz stripping

H0*→ p++ e-

h𝝼

𝞪

1.5 Tesla Magnet 1.5 Tesla Magnet

resonant 

excitation

continuum

Discrete 
states

Requires up to 500 times 

smaller laser power than 

photodetachment

hν

e-

p+
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● Proof of principle laser stripping experiment (2006). 90% efficiency, ~ 6 ns pulse

● Stripping of microsecond duration H- beams (2016). 90% efficiency, ~ 10 us pulse

LACE experiments at SNS



7

4 step/sequential laser assisted charge exchange injection scheme (demonstrated 
in 2021 at SNS)

H- H0(1s) H0*(2p)
1 GeV beam

e-

e-

p+

N

S N

S

1st step:
magnetic stripping

H- → H0 + e-

2nd step:
laser resonant excitation

H0 +h𝝼→ H0*

4th step:
magnetic stripping

H0*→ p++ e-

h𝝼

Magnet 1 Magnet 2

h𝝼

H0*(3d)

3rd step:
laser resonant 
excitation

H0* +h𝝼→ H0*

hν e

p

hν
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Different schemes of H0 excitation: 

Hydrogen atom structure and different excitation

mechanisms by different lasers for 1.3GeV H0 beam

The smaller step requires 
less laser power and 
considered to be more 
effective
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Resonant excitation of stochastic beam with energy-angular spread.

T

h𝝼

𝞪

Relativistic Doppler effect for single particle

H0

h𝝼

𝞪

Real stochastic beam with angular-energy spread

H0 𝞪 ± ∆𝞪
T ± ∆T

Resonant condition:

Real beam

Most of the beam is not in resonant conditions

n=1

n=2,3…
e-

Particles rest frame

T

Relativistic Doppler effect
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Methods of excitation of realistic beams

h𝝼

𝞪

1. Apply laser beam divergence to compensate angular-energy spread of H beam  ∆𝞿 ~ ∆𝞪

H0

𝞪 ± ∆𝞪, T ± ∆T

∆𝞿

Laser beam divergence

Angular-energy spread of H beam 

laser angular spread
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Methods of excitation of realistic beams

h𝝼

2. Beam tailoring. Correlation between T and 𝞪.
Dispersion function of the beam D is needed.
Strong dipole magnets are needed to control dispersion function. 

H0

𝞪+∆𝞪,T+∆T

𝞪,T

𝞪-∆𝞪,T-∆T

T

𝞪↔ T correlation

T

Dipole 
magnets

Experiment 
location

H- Beam
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Methods of excitation of realistic beams

h𝝼

3. Resonance broadening of hydrogen atom in a strong electric field (I. Yamane 2002, T. Gorlov 

2010)

H0

B-field in laboratory frame

B

H2p

h𝝼

laser

E- field

E-field in particles rest frame

E=0
discrete level of 
the 2p state of 
hydrogen atom

E>0

discrete level of 
the 1s state of 
hydrogen atom

wide resonance excitation

optimum E field

precise resonance excitation

hν

e

p

hν

e

p

Narrow resonance, E=0 Broad resonance, E>0

𝞪 ± ∆𝞪
T±∆T

widening
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Crab-crossing LACE scheme (A. Aleksandrov)

h𝝼Dispersion = 0

T

h𝝼

H0

T

h𝝼

T

h𝝼
H

T

h𝝼

H

Head-on collision in the particle rest frame

𝞿 > 0 𝞡

𝞿 = 0

𝞡

Dispersion > 0

Small overlap between Laser-H-
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Laser power challenges has been overcome

Required 
initial IR 

laser  Pave

600kW 8 kW 1 kW 50 W

Beam gymnastics, temporal matching Crab crossing

2006 2015 2022 2023

Sequential 
Resonance
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Most optimal laser stripping scheme for 4GeV H- beam. 

N

S

B ~ 2T

H-

4 GeV

H2p
H0

e-

p+

e-

h𝝼

1064 nm Laser

𝞪=470

● Using only one magnet that makes LACE very

compact.

● Using powerful 1064 nm narrow band laser.

● Resonant excitation of the most effective

1s→2p atomic transition in magnetic field

without Stark effect.

● Using 2p state broadening due to the strong

magnetic/electric field and simplification of

resonant excitation: 𝛄+1s→2p

● No decay loss: 2p→1s+𝛄

Benefits of LACE for 4GeV energy
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Next LACE experiments at the SNS for 1.3 GeV

H-

1.3 GeV

p+

1064 nm

355 nm

532 nm

1.3 GeV

Experiment location

Real injection

Schematics of hydrogen atom

structure and mechanisms of

different excitation schemes
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Foil assisted beam injection design for 1.3 GeV at the SNS. 
Future project.

Dipole 
magnets

p+

H0

H-

H- beam 
from Linac

Thin primary
stripping Foil

Thick secondary
stripping Foil

To Injection 
Dump

To the RingFrom the Ring

2e-

Foil stripping

H- → p+ + 2e-

p+

From the Ring p+
To the Ring

H- beam

2 MW beam power
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Foil injection vs LACE injection at the SNS

p+

H0

H-

H- beam 
from Linac

To Injection 
Dump

To the Ring
From the Ring

2e-

H- → p+ + 2e-

p+

p+

H0

H- beam 
from Linac

To Injection 
Dump

To the Ring

From the Ring

e-

p+

1st stripping magnet

H- → H0+ e-

2nd stripping 

magnet

H0* → p++ e-

e-

~1 meter

Thick secondary
stripping Foil

Foil stripping

Laser stripping

Thin primary Foil
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Laser strippng implementation into injection area of the Ring
PPU power upgrade

Dipole magnet (Chicane 03)
Dipole magnet (Chicane 02)

~1 meter Laser stripping location

Drawings of the Injection 
area of the Ring.
Courtesy of A. Menshov

Foil mechanism
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LACE for low energy beam. 400 MeV beam for J-PARC.


