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Charge exchange beam injection of H beam into the Ring.

Issues with Foils (courtesy of N. Evans)

Thin carbon stripping foil. Foil Injection. * Interaction of beam with foil causes:
* Emittance growth, halo formation
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DUMP * Activation from losses (injection ~10x hotter than rest of SNS)

* Foil heating and eventual sublimation

* Over time foils sustain damage causing
deformation
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Photoionization of H- and HO.
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Lorentz stripping of hadron beams. 1GeV H°, H- beams
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Practical scheme of laser stripping (l. Yamane 1998, V. Danilov, 2003)
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e Proof of principle laser stripping experiment (2006). 90% efficiency, ~ 6 ns pulse

e Stripping of microsecond duration H- beams (2016). 90% efficiency, ~ 10 us pulse
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4 step/sequential laser assisted charge exchange injection scheme (demonsirated
hv in 2021 at SNS)
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magnetic stripping laser resonant excitation  laser resonant magnetic stripping
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Different schemes of H° excitation:

Hydrogen atom structure and different excitation
mechanisms by different lasers for 1.3GeV H° beam
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Resonant excitation of stochastic beam with energy-angular spread.

Relativistic Doppler effect
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Methods of excitation of realistic beams

] . Apply laser beam divergence to compensate angular-energy spread of H beam A(o ~ A

Laser beam divergence
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Angular-energy spread of H beam
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Methods of excitation of realistic beams

2.  Beam tailoring. Correlation between T and a.

Dispersion function of the beam D is needed.
Strong dipole magnets are needed to control dispersion function.
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Methods of excitation of realistic beams

3. Resonance broadening of hydrogen atom in a strong electric field (I. Yamane 2002, T. Gorlov
2010)
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Crab-crossing LACE scheme (A. Aleksandrov)
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Laser power challenges has been overcome
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Beam gymnastics, tfemporal matching Resonance Crab crossing

Required
initial IR
laser P,

Average Laser Power (Logscale)
1.00E+07
1.00E+06
1.00E+05
)
S 1.00E+04
= OOE+0
C 1.00E+03 - - - - - - - -y v v e
o
o
1.00E+02
1.00E+01
1.00E+00 -
World's most Commerically First POP Required for Required for
powerful Available Experiment Full Scale Full Scale
(NIF) System 2006 System Now

%OAK RIDGE | {5anen

National Laboratory | SOURCE




¥

Most optimal laser stripping scheme for 4GeV H- beam.

OAK RIDGE | {as5anos

National Laboratory | SOURCE

1064 nm Laser

Benefits of LACE for 4GeV energy

Using only one magnet that makes LACE very
compact.

Using powerful 1064 nm narrow band laser.
Resonant excitation of the most effective
1s—2p atomic transition in magnetic field
without Stark effect.

Using 2p state broadening due to the strong
magnetic/electric field and simplification of
resonant excitation: y+1s—2p

No decay loss: 2p—1s+y



Next LACE experiments at the SNS for 1.3 GeV

Schematics of hydrogen atom
structure and mechanisms of
different excitation schemes
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Foil assisted beam injection design for 1.3 GeV at the SNS.

Future project.
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Folil injection vs LACE injection at the SNS
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Laser strippng implementation into injection area of the Ring
PPU power upgrade
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Drawings of the Injection
area of the Ring.
Courtesy of A. Menshov
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LACE for low energy beam. 400 MeV beam for J-PARC.

@ Beam energy 0.4 GeV. —) Need:s much.hl'ghel—' magnetic fields lonization (Electron is free)
€ Angular spread due to a fringe field striiping is also concerned. - ¥ . 0.00
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A POP demonstration at 400 MeV 1s under preparation.
Experimental studies will be started in 2024.

A relatively bigger vacuum chamber is installed.
@ A prototype YAG laser system and a multi-reflection cavity system UV laser angle can be changed for different

to sufficiently reduce the seed laser energy have been developed. excitation state.

& The R&D of the UV laser just started.
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