

HB2023, 10 Oct. 2023

Muon Production Target at J-PARC

Shiro Matoba KEK J-PARC

Contents

- Muon production target
- Development of monitoring systems
- Exchange of the target

Japan Proton Accelerator Research Complex

MUSE & MUON TARGET

MFL : muon and neutron production targets.

- D and S lines are opened for users.
- U and H lines are operated in beam commissioning.

Muon Fixed Target (2008-2013)

Isotropic Graphite

(IG-430; Toyo Tanso Co., LTD.) Thickness; 20 mm, Diameter 70 mm <u>4-kW heat</u>, beam diameter 14 mm <u>Fixed edge-cooling method</u>

Irradiation by proton beam to graphite, Lifetime; 6 months (@1MW)

1 %/year shrinkage of graphite on the beam spot

Remote controlled replacements in Hot cell

Rotating Target (Graphite)

Learning from Paul Scherrer Institute, Rotating target method to distribute the <u>radiation damage of graphite</u> to a wider area.

The <u>lifetime of bearings</u> is critical. Solid lubricant;

- □ Silver coating at PSI (-2020)
- Disulfide tungsten at MUSE

Expected lifetime; <u>10 years</u>

Retainer, balls, & rings, coated by MoS2 or Silver

Dose; <u>100MGy/year</u>, Vacuum; <u>10⁻⁵Pa</u>, Tmp.; <u>150°C</u>, Radial load; <u>33N</u>, thrust load; <u>20N</u> I.D. =17mm, O.D.= 40mm, w=12mm, Internal clearance C4 (ISO 5753)

	Туре	Temp. (°C)	Vacuum (Pa)	radiation resistance	Inventory Storage	Life at J-PARC / h
MoS ₂	Retainer	<300	10^{5} to 10^{-5}	ОК	Atmos.	1100
WS ₂	Separator	<350	10 ⁵ to 10 ⁻⁵	OK (EB test)	Atmos.	<u>110000</u>
AIP-Ag	Retainer	<350	10 ⁻³ to 10 ⁻¹⁰	ОК	In vacuum	5800

Rotating Target for muon production

The No.1 target was installed in Sep. 2014, and was replaced with the No.2 in Sep. 2019.

- Diameter: 33 cm, thickness : 2 cm
- 15 rpm operation
- Radiation cooling
- Lubricant of bearing: tungsten disulfide
- Life time : aiming \geq 5 years
- Beam diameter: 14 mm (2sigma)
- 4kW heat on target at 1 MW

Separator made of sintered Bearing compact of WS2 **Proton**

 \mathcal{N}

00

Operation history of the rotating targets

- No.1: Operation for the 5 years.
- History of beam operation (~June 2019) : ~15000 h Rotation : ~15 M revolutions (Service life of WS_2 bearings ~50 M)
- No. 2 : \sim 10000 h, \sim 10 M revolutions

Contents

- Muon production target
- Development of monitoring systems
- Exchange of the target

Monitor with Infrared camera

- Thermocouples
- Slow response time
- Target temperature
 unknown

- Infrared camera
- Quick response
- Imaging

→Rapid beam stop when temperature abnormality increases

Heat conduction calc.

(C)Vision sensing

★ULVIPS-04171SL

Pixels : 648×480 accuracy : ± 2 K or $\pm 2\%$ focal distance : 150 mm

Multiplexing and speed up for the interlock system
 Life prediction for the rotating system and target
 ABNORMALITY PORTENT

Infrared camera

An infrared camera was installed to quickly detect the temperature rise due to rotation stop.

- The infrared camera has irradiation test (QST Takasaki and NIRS). The camera is expected to have radiation resistance of more than one year (5 Gy or more) at 1 MW operation.
- The beam duct was replaced with a duct with a camera port.
 The reflected light from the mirror in the duct is measured.
 We performed a trial measurement for several months.

Infrared mirror in beam duct

Beam duct with camera port

Shielding for the camera

Infrared camera

- Direct observation with the infrared samera was successful (Eigure 1 Eigure 2)
- Direct observation with the infrared camera was successful. (Figure 1, Figure 2)
- At the center, a high-temperature part, which is likely to be a beam spot with a diameter of about 1.5 cm, was observed.

Infrared camera

- ■Interlock for beam stop
- Abnormal temperature rise
- Rotation stop by an image recognition technique
- ■Life prediction for the rotating system
- Evaluate damage to graphite and rotating shaft by image recognition

Analysis of images

• Diffusion of local heating by the proton beam can be seen in the direction perpendicular to the rotation.

- Fast eXtraction(FX) : Missing 4 pulses every 2480 ms at MLF -> Heat is more diffuse during FX.
- The infrared camera takes a picture every 99.4 milliseconds on average. After 25 shots, 99.4 x 25 = 2485 ms
- The 5 msec gap allows for stroboscopic analysis.

Heat conduction analysis was estimated from thermal diffusion images taken every 5 milliseconds.

Thermal conductivity $k = D \rho Cp = \frac{144.18 W/K}{m}$

is good agreement with IG430 of the target material : k~140W/K/m

*We are currently analyzing the change in thermal conductivity due to irradiation using long-term imaging data.

Radiation errors

Contents

- Muon production target
- Development of monitoring systems
- Exchange of the target

Trouble with rotating coupling (2018)

• The rotating coupling to transmit rotational motion was broken (found in Sept. 2018 during maintenance work).

• The rotating coupling has a keyway process to prevent slippage at the joint with the rotating shaft. There was a mistake in the processing of the keyway, and the strength of the coupling was reduced.

Rotating coupling

Rotational motion feedthrough

The damaged coupling was replaced with a stronger one in the summer of 2018.

Another weak coupling is used in vacuum.

Beam operation was continued until 2019 under strict monitoring.

Replacement the muon production target in 2019

Prevention of internal exposure and contamination

When water enters tritium contaminated equipment during work, tritium diffuses into the atmosphere due to isotopic exchange.

<u>Measures</u>

- ① Airline respirator
- ② Greenhouse
- ③ Negative pressure in Cask for transportation

Negative pressure test

Temporary storage

Blower for negative pressure control Exhaust to stack piping after contamination measurement

Replacement work

•Rotating target (No.1) was successfully pulled out from proton beamline.

• Tritium contamination level (Max: 0.3 Bq/cc) was lower than the J-PARC regulation value (0.8 Bq/cc).

Maintenance in green house with anorack suits & airline mask.

1 MW operation for 32 hours (June, 2020)

• Thermal response of targets and scrapers was found to be consistent with the prediction. No difference was observed between the previous (No.1) and current (No.2) target systems.

• Motor torque showed no anomaly during 1 MW operation.

Target Group at MUSE

2014 Fabrication and installation of rotating targets

2023 Operation and development of monitoring systems

Summary

- The muon rotating target at J-PARC continues to operate stably for a long life time with WS2 bearings.
- Developing of new monitoring systems
 - Machine learning of torque. →In development
 - IR Camera to measure real-time two-dimensional temperature →installed ※Countermeasures for radiation errors
 - Analysis of emitted gases with Q-Mass
 → Installed
- Replace of rotating target
 - Measures against tritium pollution and radiation exposure