

Measurement of Momentum Halo Due To the Reduced RFQ Voltage During Beam Commissioning of LIPAc

Kouki Hirosawa¹, A. De Franco¹, K. Masuda¹, A. Mizuno¹, S. Kwon¹, K. Kondo¹, M. Sugimoto¹, K. Hasegawa¹, I. Moya², F. Scantuamburlo², F. Benedetti^{2,3}, D. Gex², H. Dzitko², Y. Carin², I. Podadera^{4,5}, J. C. Morales Vega⁵

¹QST, ²F4E, ³CEA, ⁴CIEMAT, ⁵IFMIF-DONES España

9-13 Oct. 2023 HB2023@CERN, Switzerland

GOST

FUSION FOR ENERGY

dum

Linear IFMIF Prototype Accelerator (LIPAc)

Rokkasho Fusion Institute (BA Site)

LIPAc Overview

Phase-B+ Beam commissioning

Momentum Halo due to the reduced RFQ voltage

Summary and Discussion

LIPAc Overview

Phase-B+ Beam commissioning

Momentum Halo due to the reduced RFQ voltage

Summary and Discussion

Linear IFMIF Prototype Accelerator (LIPAc)

To validate low energy part (≤ 9.0MeV) of the IFMIF accelerator for testing material for the fusion power plant.

lon species	D+
	(H ⁺ for start-up/tuning)
Peak current	Up to 125 mA
RFQ output energy	5 MeV
SRF output energy	9 MeV
RF frequency	175 MHz
Bunch width	0.1–0.7 ns (sim.)
Duty factor	10 ⁻² – CW
Pulse length	$10^2 \mu s - CW$
Beam power	Up to 1.125 MW

Previous Phases

Phase-B (Jun. 2018 - Aug. 2019)

K. Kondo et al., Fusion Eng. Des. 153 (2020) 111503.
H. Dzitko et al., Fusion Eng. Des. 168 (2021) 112621.
K. Kondo et al., Nucl. Fusion 61 (2021) 116002.
L. Bellan et al., the Proc. of ICFA HB2021 (2021).

FUSION FOR ENERGY

Injector + RFQ + MEBT + D-Plate + LPBD

5MeV, -125mA, 625kW, Pulsed beam

9-13 Oct. 2023

Phase-B+ Mission

- Injector CW operation
- RFQ CW operation
- 125mA 5MeV D⁺ beam in high DC
- To Validate diagnosticsPreparation for Phase-C

FUSION FOR ENERGY

GQST

LIPAc Overview

Phase-B+ Beam commissioning

Momentum Halo due to the reduced RFQ voltage

Summary and Discussion

LIPAc Phase-B+ Stage-1

Stage-1 (Jul. 2021 – Dec. 2021)

- ✓ The Pilot beam (10mA H⁺ and 20mA D⁺) were tested.
- Chopper pulsing has been confirmed.
- Alignment of full beam transport was check in beam-based method.
- ✓ Newly installed components were checked.
 - **D** Validation of diagnostics \rightarrow Stage-2 and -3 in high current and DC.
- ✓ Measured beam size could be reproduced by the simulation.
- Evaluation of space charge compensation degree.

Interesting topics observed from this stage

□ Transient of chopper and space charge compensation.

9-13 Oct. 2023

^{1.} K. Masuda, the Proc. of LINAC2022 (2022).

Stage-2 (Aug. 2023 -)

Developed point – Learnt from Stage-1, Alignment corrected, Injector CW commissioning completed.

Objective and Results:

D Recheck what we confirmed during stage-1, in the high current operation.

- ✓ Chopper worked well.
- ✓ Beam-based alignment was performed.
- □ Transport the 5MeV 125mA D⁺ beam to the BD.
 - ✓ Beam transported to the BD (112mA D⁺ 150us with 120us plateau, 1Hz).
- □ Validation of the Interceptive/non-interceptive diagnostics.
 - \checkmark Interceptive devices worked well. Details \rightarrow Oral session by S. Kwon (FRC112)
 - ✓ Visibility of all BPMs has been confirmed by steering scan.
- □ Study dynamics of space charge compensation degree.
 - Testing the effect of Kr gas flow rate to the transient

Stage-2 (Aug. 2023 -)

Developed point – Learnt from Stage-1, Alignment corrected, Injector CW commissioning completed.

Objective and Results:

- **D** Recheck what we confirmed during stage-1, in the high current operation.
 - Chopper worked well.
 - ✓ Beam-based alignment was performed.
- □ Transport the 5MeV 125mA D⁺ beam to the BD.
 - ✓ Beam transported to the BD (112mA D⁺ 150us with 120us plateau, 1Hz).
- Validation of the Interceptive/non-interceptive diagnostics.
 - \checkmark Interceptive devices worked well. Details \rightarrow Oral session by S. Kwon (FRC112)
 - ✓ Visibility of all BPMs has been confirmed by steering scan.
- □ Study dynamics of space charge compensation degree.
 - Testing the effect of Kr gas flow rate to the transient

Stage-2 (Aug. 2023 -)

Developed point – Learnt from Stage-1, Alignment corrected, Injector CW commissioning completed.

Objective and Results:

D Recheck what we confirmed during stage-1, in the high current operation.

- Chopper worked well.
- Beam-based alignment was performed.
- □ Transport the 5MeV 125mA D⁺ beam to the BD.
 - ✓ Beam transported to the BD (112mA D⁺ 150us with 120us plateau, 1Hz).
- Validation of the Interceptive/non-interceptive diagnostics.
 - ✓ Interceptive devices worked well. Details \rightarrow Oral session by S. Kwon (FRC112)
 - ✓ Visibility of all BPMs has been confirmed by steering scan.
- □ Study dynamics of space charge compensation degree.
 - Testing the effect of Kr gas flow rate to the transient

~112mA

Stage-2 (Aug. 2023 –)

Developed point – Learnt from Stage-1, Alignment corrected, Injector CW commissioning completed.

Objective and Results:

Recheck what we confirmed during stage-1, in the high current operation.

- Chopper worked well. \checkmark
- Beam-based alignment was performed.
- Transport the 5MeV 125mA D⁺ beam to the BD.
 - Beam transported to the BD (112mA D⁺ 150us with 120us plateau, 1Hz). \checkmark
- Validation of the Interceptive/non-interceptive diagnostics.
 - Interceptive devices worked well. Details \rightarrow Oral session by S. Kwon (FRC112) \checkmark
 - Visibility of all BPMs has been confirmed by steering scan.
- Study dynamics of space charge compensation degree.
 - Testing the effect of Kr gas flow rate to the transient

9-13 Oct. 2023

HB2023 @CERN, Switzerland

200

Measurement by ACCTs (7th / Sep. 2023) 150 ~125mA 125

1st ACCT

2nd ACCT

3rd ACCT

4th ACCT

100

150

50

0

Current [mA] 22 20 20

25

-50

LIPAc Phase-B+ Stage-2

LIPAc Phase-B+ Stage-2

LIPAc Overview

Phase-B+ Beam commissioning

Momentum Halo due to the reduced RFQ voltage

Summary and Discussion

- Reduced RFQ voltage induces spreading distribution following discrete energy levels.
- Phase-C configuration has a cryomodule LINAC with 8 superconducting solenoids and cavities, which has 10W margin of the heat as the whole helium tank.
- Phase-B+ is a good chance to test beam dynamics depend on RFQ voltage, aggressively.
- By testing it in this phase, we are considering to prepare a kind of Interlock for losses in the cryomodule.

IFMIF FUSION For Energy Momentum Halo due to the reduced voltage **G**QST

RFQ simulation: applied vane voltage = 90% (119kV) - 105% (138kV)

are included in the same duration just after RFQ.

9-13 Oct. 2023

HB2023 @CERN, Switzerland

Downstream simulation for the cryomodule ST

Beam loss in the cryomodule was checked by particle tracking simulation.

IFMIF

10W

1.04

Check Beam Loss in the Phase-B+

Estimation by tracking simulation was done to know good monitoring position if we can detect the effective beam loss along the downstream BT.

9-13 Oct. 2023

IFMIF

FUSION FOR ENERGY

IFMIF

Mean Energy vs RFQ voltage

As a measurable value for our system, mean energy of each bunch is one candidate.

Not accelerated particles \rightarrow Not detectable in BPM Only core and its tail \rightarrow Maybe measurable by ToF (4.3MeV-particles)

Less than 95%, ~ 5keV resolution is good to distinguish distributions of several RFQ voltages. Upper region requires ~1keV resolution.

Previous results of BPM 1. I. Podadera, the Proc. of IBIC2019 (2019).

FUSION FOR ENERGY

Energy distribution (Logscale)

As the mean energy resolution, < 0.5keV for 350MHz can be expected. \rightarrow Enough to see 1% difference.

IFMIF

LIPAc Overview

Phase-B+ Beam commissioning

Momentum Halo due to the reduced RFQ voltage

Summary and Discussion

- LIPAc is now in the beam commissioning Phase-B+.
 - Aims to High current, High DC
- **Beam to the BD : 5MeV-112mA D⁺ beam in 150us-1Hz DC.**
- Good agreement between sim. and meas. for the pilot beam.
- > Study of the space charge compensation is being proceeded.
- For momentum halo due to the reduced RFQ voltage,
 - Loss monitor approach near bend is planned in the Phase-B+.
 - Resolution of BPM-ToF looks enough (< 0.5keV) to draw the energy carve.

Thank you for your attention!

Backup slides

RFQ RF system

17, Dec., 2021. We reached to CW with 108kV (80% of design).

RFQ-RF circulator issue, 1st, Feb. 2022 ST

RFQ coupler leak issue, 29, Mar. 2022

9-13 Oct. 2023

IFMIF

PAC

HB2023 @CERN, Switzerland

RFQ coupler leak issue, 29, Mar. 2022

Vacuum leak were happened from two RFQ input couplers, so we disassembled all couplers and checked it. Bellow 4 pictures are typical windows dismantled from the coupler.

Deposit like copper can be seen from the windows, which had high temperature during the test. Cold windows never show effective temperature increasing.

We modified the inner conductor of vacuum side, and flanges to enhance cooling efficiency.

IFMIF

FUSION FOR ENERG

Another RFQ input coupler

Because of vacuum quality of bridge cavity, in our guessing, was observed during the test, so we plan to modify the cavity.

FUSION FOR ENERGY

GQST

H+ beam 26/Nov, 2021 without chopper

Beam induced voltage in the detuned buncher in presence of Kr Gas flow Blue = 1.4 sccm Red = 0.85 sccm Yellow = 0.38 sccm Violet = 0 sccm

As increasing Kr gas flow, zigzag shape is disappeared.

Oscillation period switched here.

D+ beam 07/Dec, 2021, chopped

Beam induced voltage in the detuned buncher in presence of Kr Gas flow Blue = 2.36sccm, 6.9E-5mbar Red = 0.0sccm , 6.9E-5mbar

With Kr gas SCC, large amplitude oscillation was observed.

Mean Energy can be measured by beam position and phase monitor.

4 BPMs implemented in the MEBT is good to use for voltage calibration of the RFQ of Phase-C/D.

One phase locked clock by White Rabbit is shared among 4 BPMs. → Relative phase offset can be frozen among them.

Data type of this measurement: Max 25MS/s for 1 channel. Output rate (memory storage rate) is 100MS/s.

To focus on the relative change of mean energy, offset value to the phase calibrated by beam.