

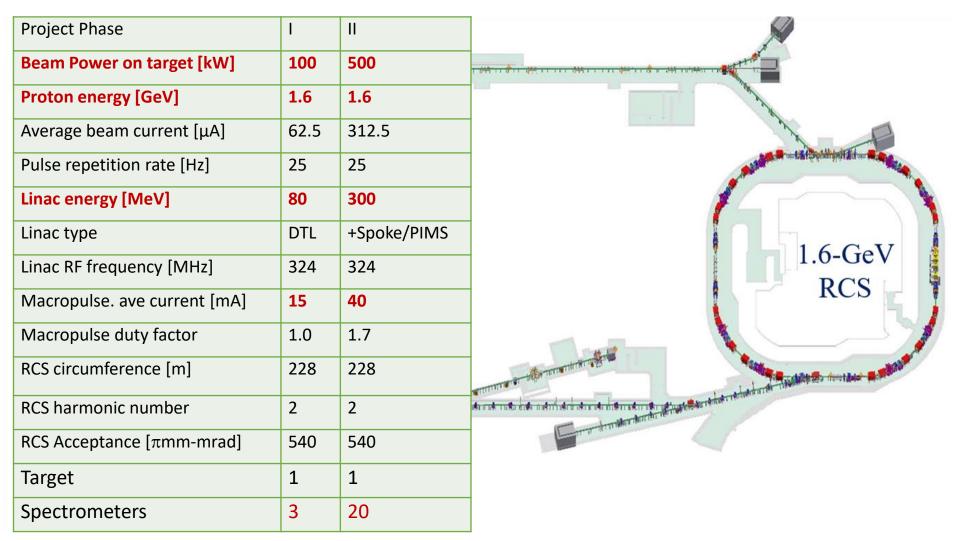
Application of programmable trim quadrupoles in beam commissioning of CSNS/RCS H.Y. Liu Y. Li Institute of High Energy Physics, CAS Geneva, Switzerland, 9-13 October 2023

Background

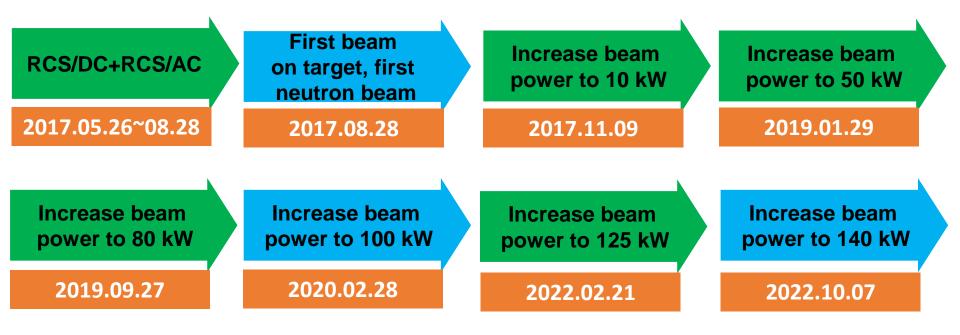
2 Applications of QTs in CSNS/RCS

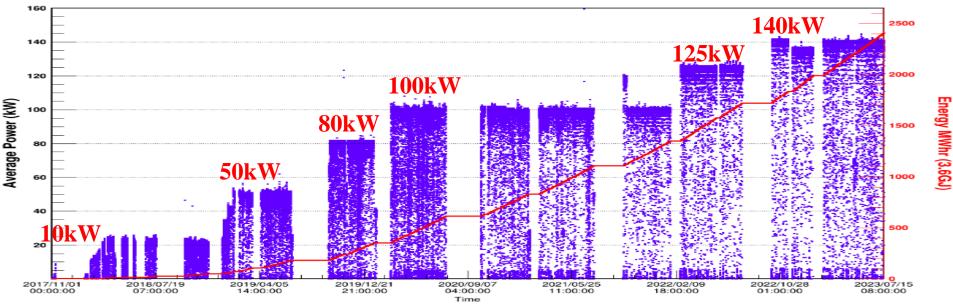
Airview map

中国散裂中子源装置地A点拍摄(09.5.9)


中国教教中子源工程进展照片 (2017.6)

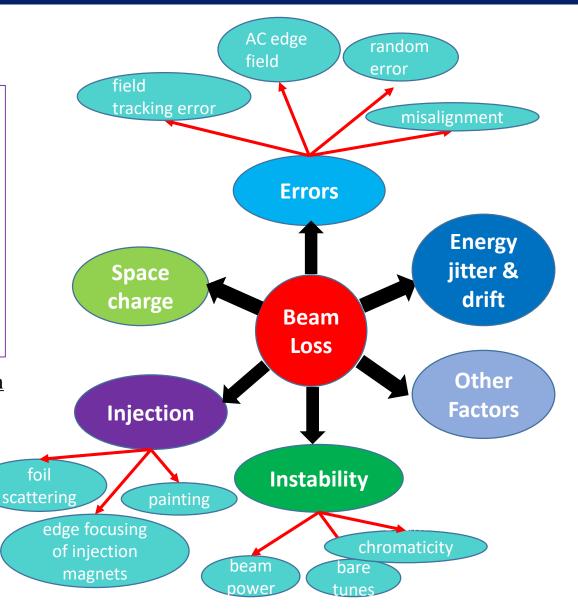
Project Design




 The phase-I CSNS facility consists of an 80-MeV H[−] linac, a 1.6-GeV RCS, a target station, and 3 instruments.

History of the RCS beam power

Issues in the beam commissioning



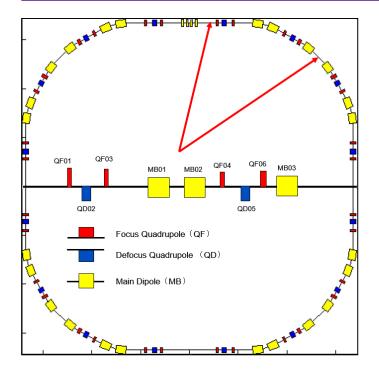
1 Beam loss in RCS

- The beam optics parameters deviate from the design values due to various errors.
- Space charge, instability, and beam loss is increasing with the output beam power.
- The radiation dose in the injection zone is the highest in the ring.

injection section@1h after shutdown

Residual dose [mSv/h]	
1.37	
7.6	
	[mSv/h] 1.37

Issues in the beam commissioning

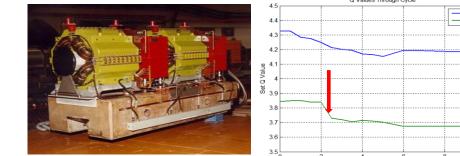


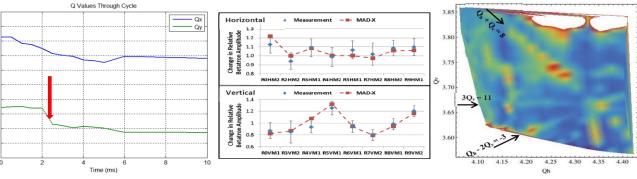
② Optics parameters correction

- 48 main quads are powered by 5 sets of power supplies
- The harmonic injection method was used in CSNS/RCS

f(t) = a + b*sin(w*t+p) + b1*sin(2*w*t+p1) + b2*sin(3*w*t+p2).....

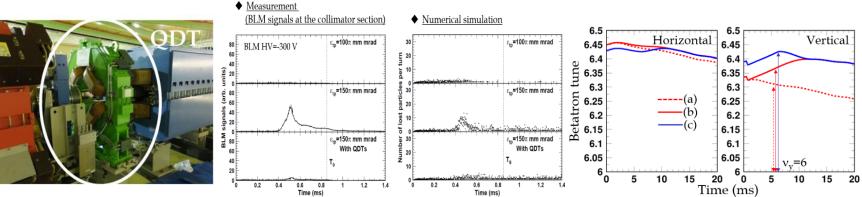
- The variation of the optics through the machine cycle is relatively smooth
- Tuning optics with main quads in short time is difficulty, especially for rapidly variation




Magnet Harmonic		Q206A	Q272	Q206B	Q222	Q253	
DC (A)		720.7	794.1	642.9	618.2	747.6	
	Amp(A)	531.4	568.5	466.3	446.4	538.7	
25Hz	Phase(π)	1.5	1.5	1.5	1.5	1.5	
50Hz	Amp(A)	15.24	8.57	8.211	4.537	8.876	
	Phase(π)	0.145	0.79	0.58	0.52	0.67	
75Hz	Amp(A)	3.727	7.745	4.813	1.767	6.738	
	Phase(π)	0.7	1.53	1.445	1.308	1.43	
	Amp(A)	2.623	3.744	1.1832	0.2227	2.454	
100Hz	Phase(π)	0.85	0.02	0.23	1.74	0	
125Hz	Amp(A)	2.901	1.495	0.3251	0.29	0.9701	
	Phase(π)	1.7	0.46	1.99	0.054	0.294	

Applications of QTs in other machines (SNS

ISIS


- There are 2 sets of 10 programmable trim quads in the ISIS ring.
- Applications: allow rapid variation of tune; measure β-functions; measure tune map.

J-PARC

- 6 QTs with independent pulse-type power supplies; locate at dispersion-free region.
- Applications: compensate the β-beat; tunes optimization through the machine cycle.

Design of trim quads

Design factors

- Beta-beat correction (first 5ms)
- Tunes optimization (at least 10ms)

Final parameters

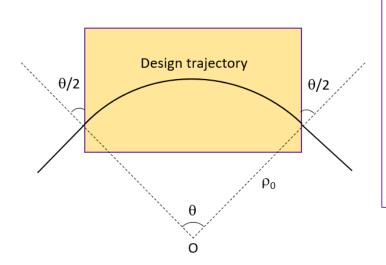
- 16 QTs are designed to be independently powered allowing a fine tuning of the β -functions and bare tunes at 21 time points through ramping time of 20 ms.
- The maximum rate of current change for the QTs is 300 A/ms, ensuring fast modulation of the tunes even in the high-energy region.

Parameters [unit]	Value	QF01	QF03			QF04 Q	F06		QF	07 QF09			OF10	QF12
Magnets No.	16													
Magnet length [mm]	150	OTM	QD02										0011	OTU
Bore radius [mm]	272	Q102	QD02	MB01	MB02	QT05 QD)5 MB03		MB04	QD08 QT08	MB05	MB06	QUII	QT11
Maximum Gradient [T/m]	1.18	6 (b)	•			• k01 • k02	•	k05 k06						
Good field radius [mm]	126	4 [II] /L 2		•••		 k02 k03 k04 	:	k07 k08						
Higher-order field error [%]	0.5	10-2								6	QD			TQ
Power Supply No.	16	Gradient				• k9		k13	2/	¥	* * *	****		
Peak current [A]	550	Cra		•		 k9 k10 k11 		k13 k14 k15	CICKUR2					TAT
Peak rate of current change [A/ms]	300		•			• k12	•	k16		10	R2.9 07			
Dynamic tracking accuracy[%]	2	0.0	2.5 5.0		10.0 Time [m		.0 17.:	5 20.0		é				

1: Injection system

(1) Super-periodicity restoration

250 Injectior To beam dump H⁻ 200 200 ISEP2 ISEP1 150 150 Ê100 100 BH3 BH1 × ₅₀ 50 Q -50 -50 BC2 BV4 -100 100 0.0 Z (m) -2. -1. 1.0 2.0 4.0 5.0 6.0 -3. 3.0


Magnet Type	Length (m)	B _{max} (T)	θ _{max} (mrad)	Number
ВН	0.3	0.114	26.0	4
BV	0.3	0.09	20.2	4
BC	0.35	0.285	60	4

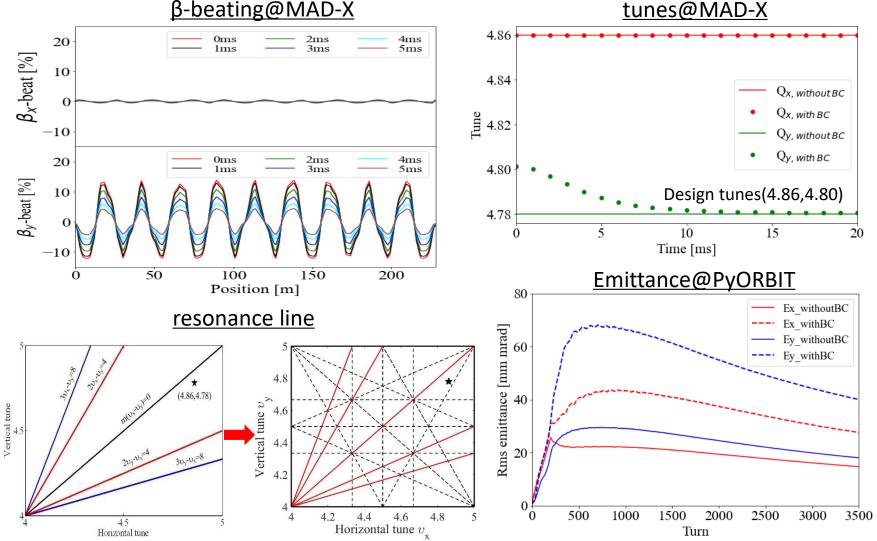
- The transverse injection painting scheme is widely adopted in many high-intensity hadron synchrotrons to alleviate space charge effects.
- The CSNS injection system consists of 12 rectangular dipole magnets.
- BH1~BH4 and BV1~BV4 are pulsetype bump magnets, which are used to generate dynamic orbit bumps.
- BC1~BC4 provide additional fixed horizontal orbit bumps. The four BCs are designed as DC type chicane magnets to avoid the use of complex vacuum chambers.
- The edge focusing effect of the DC injection bump magnets breaks the 4-fold symmetry of the RCS.

① Super-periodicity restoration

2: Edge focusing of injection bump magnets

$$M_{x} = \begin{bmatrix} 1 & 0\\ \frac{\tan\frac{\theta}{2}}{\rho_{0}} & 1 \end{bmatrix} \begin{bmatrix} \cos\theta & \rho_{0}\sin\theta\\ -\frac{\sin\theta}{\rho_{0}} & \cos\theta \end{bmatrix} \begin{bmatrix} 1 & 0\\ \frac{\tan\frac{\theta}{2}}{\rho_{0}} & 1 \end{bmatrix} = \begin{bmatrix} 1 & \rho_{0}\sin\theta\\ 1 \end{bmatrix}$$
$$M_{y} = \begin{bmatrix} 1 & 0\\ -\frac{\tan\frac{\theta}{2}}{\rho_{0}} & 1 \end{bmatrix} \begin{bmatrix} 1 & \rho_{0}\theta\\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0\\ -\frac{\tan\frac{\theta}{2}}{\rho_{0}} & 1 \end{bmatrix} = \begin{bmatrix} 1-\theta\tan\frac{\theta}{2} & \rho_{0}\theta\\ \frac{\theta\tan^{2}\frac{\theta}{2}}{\rho_{0}} -\frac{2\tan\frac{\theta}{2}}{\rho_{0}} & 1 - \theta\tan\frac{\theta}{2} \end{bmatrix}$$

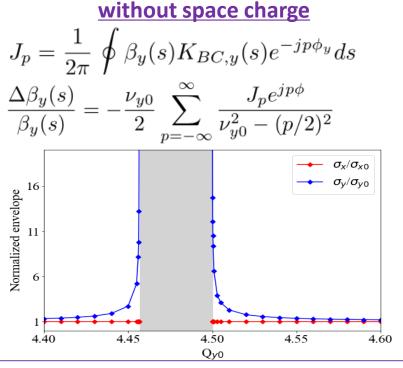
- The edge focusing effect of the horizontal bump magnet causes the focusing effect only in the vertical plane and the horizontal focusing is completely canceled by the intrinsic focusing property on the bending plane.
- The vertical edge focusing strength is relatively large in the first <u>5 ms</u>.

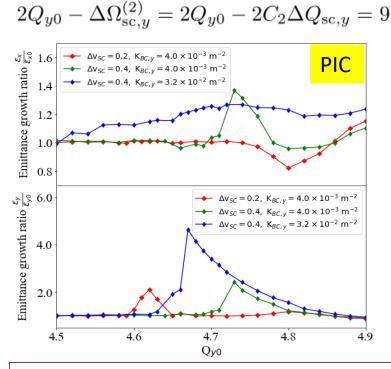


12

Super-periodicity restoration

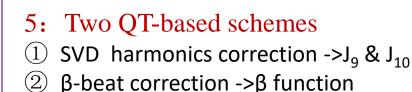
3: Edge focusing effects

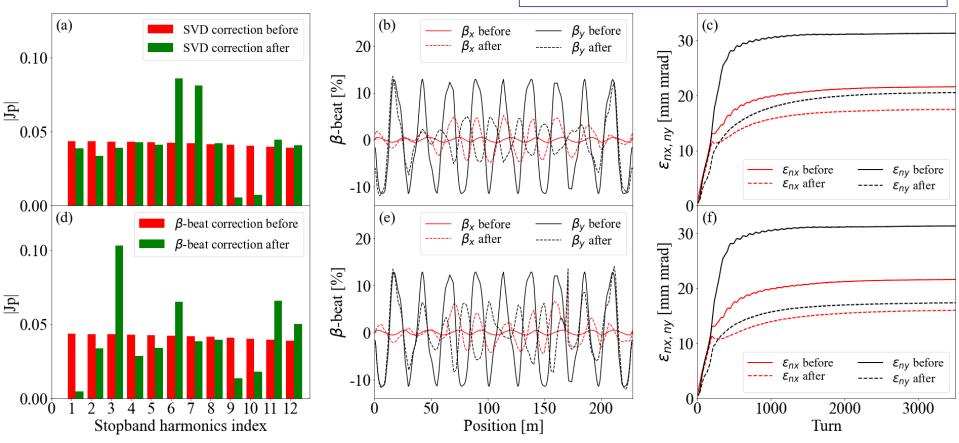

<u>β-beating@MAD-X</u>


① Super-periodicity restoration

4: Half-integer resonance caused by edge focusing effects

- For the CSNS/RCS with the design bare tune (4.86, 4.80), the resonance width $J_9 = 0.042$.
- The envelope growth keeps constant in the horizontal plane, but increases rapidly in the vertical plane as Q_{v0} approaching to 4.5.

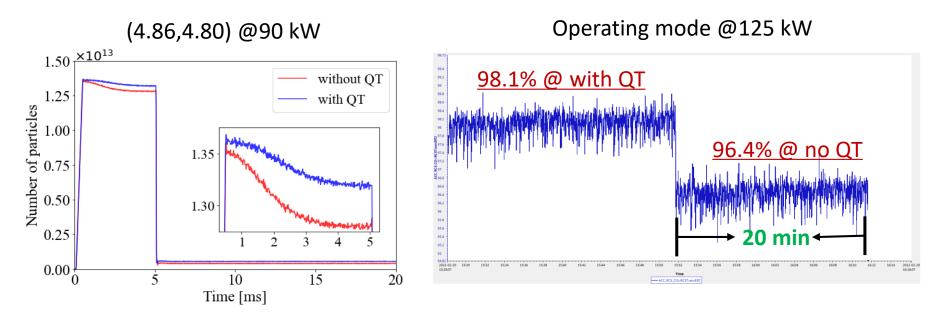

with space charge


- The emittance growth mainly occurs on the vertical plane.
- The resonance strength is proportional to the edge focusing and space charge.

① Super-periodicity restoration

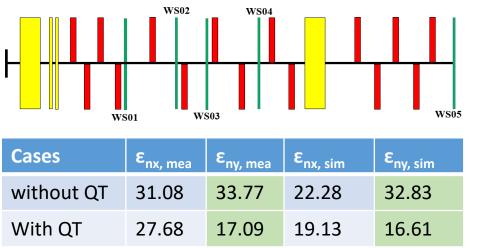
Most of the stopband harmonics and β beat are largely reduced. The emittance growth is decreased significantly via using the two correction schemes.

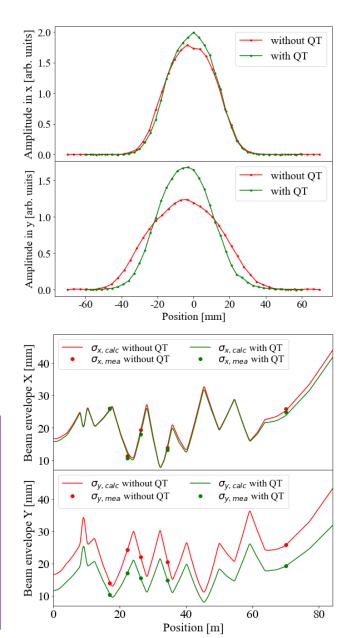
① Super-periodicity restoration


- 6: Experimental results
- (1) β -function
- Orbital response matrix method is adopted.
- The measured β_{y} -function is in good agreement with the theoretical β_{y} -function.
- The maximum β_{y} -function is significantly reduced and most of the β -beat was effectively corrected by QTs to less than 5%, which proves that QTs have a significant correction effect on β -beat.

① Super-periodicity restoration

- 6: Experimental results
- **②** Beam loss and beam power

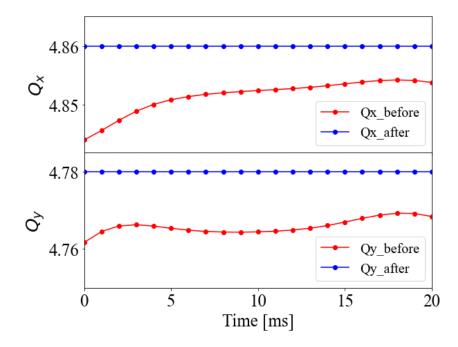

 More particles survive in the beams in the presence of QTs than that without QTs, with a reduction ratio of beam loss by 2% – 3%.


① Super-periodicity restoration

6: Experimental results

③ Beam Emittance

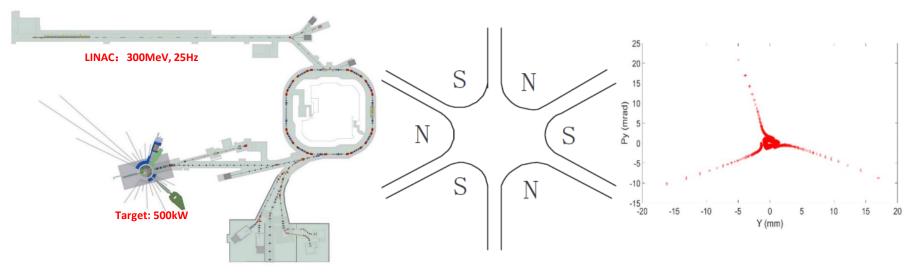
- Five wire scanners are installed on RTBT transport line for the emittance measurement of the extracted beams from the RCS.
- The extracted beam at 5 ms has a Gaussian-like distribution.
- Beam envelope and emittance in the vertical plane decreases significantly with QTs.



2 Tunes optimization

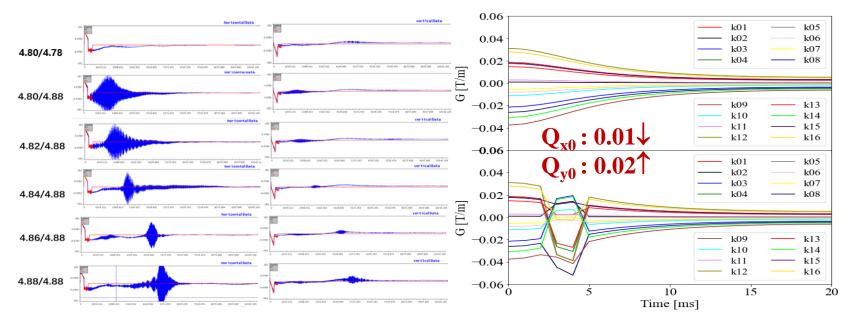
- Due to the harmonic injection method with the main quads, the variation of the tunes through the machine cycle is relatively smooth, and the tuning capability with main quads in short time is limited, especially for rapidly variation.
- However, the installation of QTs enables fast variation of tunes for a specific energy range or tuning throughout the machine cycle.

eg1: Correction of AC dynamic edge fields for main quads


- Due to the dynamic edge fields of the main quads through machine cycle on the CSNS/RCS ring, the tunes of the entire ramping time deviates from the design value.
- By using QTs, the tunes can be compensated to the design value through the 20-ms ramping time.

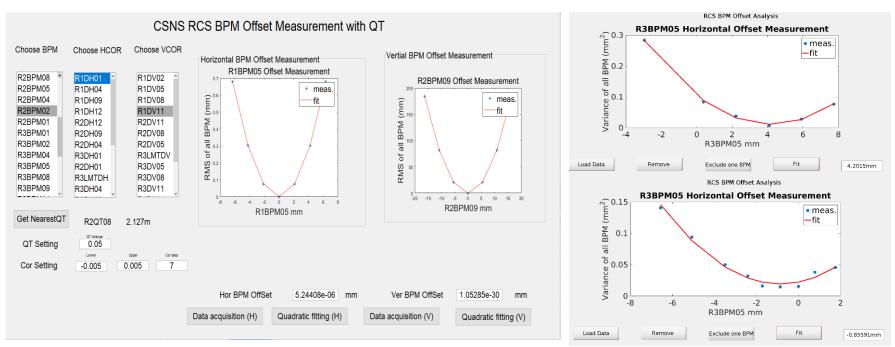
② Tunes optimization

eg2: Fast extraction with third-order resonance


- The extraction of third-order resonance has important applications in proton imaging, spatial irradiation, cancer treatment, and other areas.
- The Q_v of CSNS/RCS was adjusted from 4.69 to 4.66 within 10 μ s using QTs.
- Then sextupole magnets were used to drive third-order resonance.

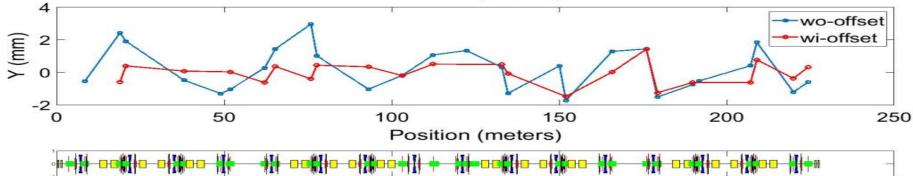
2 Tunes optimization

eg3: Suppressing beam instability


- It was found a very strong horizontal betatron oscillations occurs under certain bare tunes and beam powers.
- The beam instability can be suppressed with little oscillations by sextupole magnets.
- The beam instability can be further reduced by fine tuning the QTs. After the tuning, the beam became stable and met the requirements for routine operation.

③ BBA measurement

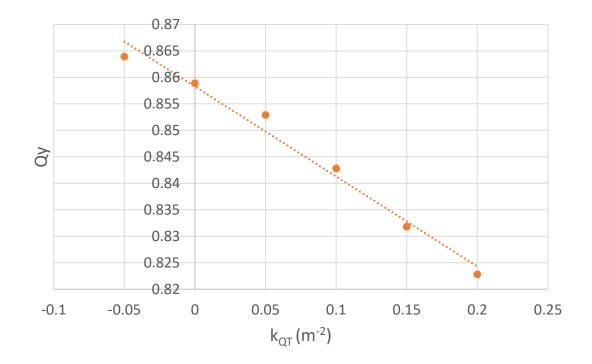
- BBA was successfully applied in many accelerators to measure BPM offsets.
- BBA could not be applied in CSNS/RCS without individual controlled quads.
- For high-intensity beams, it is crucial to control the COD within a small range, so it is urgent to know the true COD in CSNS/RCS.
- BPM offsets were measured smoothly after installing 16 QTs. The distance (center to center) between BPM05/BPM08 and QT is less than 0.3 m.
- During the beam experiment, RCS runs in the storage mode.



③ BBA measurement

- Several BPM offsets are around 4 mm.
- The COD is smaller after orbit correction with the BPM offsets.

BPM	offset_X offset_Y		BPM	offset_X	offset_Y
R1BPM01	2.9		R3BPM01		
R1BPM02	4.2		R3BPM02	0.28	
R1BPM04			R3BPM04		
R1BPM05	2.95	-2.52	R3BPM05	4.2	-0.6
R1BPM08	0.54	-1.23	R3BPM08		
R1BPM09	4.6		R3BPM09		
R1BPM11		-0.66	R3BPM11		-0.5
R1BPM12	0.7	-2	R3BPM12		-4.5
R2BPM12		-0.18	R4BPM12		
R2BPM11	1.56		R4BPM11		
R2BPM09			R4BPM09		
R2BPM08	2.45	-3.76	R4BPM08	2.4	-0.96
R2BPM05	1.02	-0.38	R4BPM05	0.46	-0.6



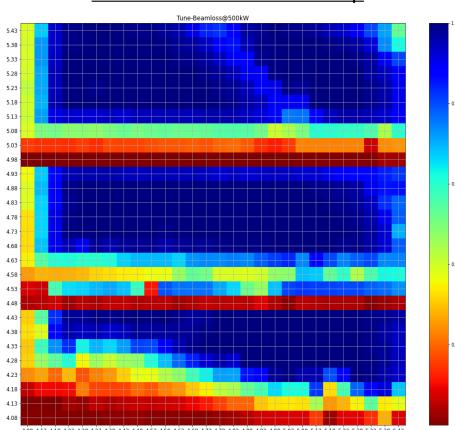
(4) Beta function measurement

The beta function can also be measured with QTs based on the tune shift caused by the variation of QT strength.

$$\Delta v = \frac{1}{4\pi} \oint \beta(s_1) \mathbf{k}(s_1) ds_1 \quad \blacksquare \quad < \beta_{x,y} >= 4\pi \frac{\Delta v_{x,y}}{\Delta KL}$$

5 Tune map measurement

Purpose:


- ✓ Find candidate tunes for CSNS-II
- ✓ Study nonlinear behaviors

Simulation:

- ✓ PyORBIT code
- ✓ Scan range 4.0<Q_{x,y} <5.0 (0.05)
- ✓ Only with space charge
- Structural resonances and halfinteger resonances are important factors contributing to beam loss

Future plan:

- \checkmark Simulate with all kinds of errors
- ✓ Beam experiments
- ✓ Automatically adjust QTs

Simulated CSNS-II tune map

- To address issues such as rapid manipulation of the working point, correction of twiss parameters, and restoration of the lattice, 16 programmable trim quads were successfully installed in CSNS/RCS.
- The experimental results on lattice restoration show that the βfunction is effectively compensated, the beam loss and the emittance growth are significantly reduced with QTs.
- The trim quads will play an increasingly crucial role in the process of increasement of beam power.

