

Differential Algebra for Accelerator Optimization with Truncated Green's Function

68th ICFA Advanced Beam Dynamics Workshop on High-Intensity and High Brightness Hadron Beams

Oct 9-13, 2023, Geneva, Switzerland

10/11/2023

Chong Shik Park

Department of Accelerator Science / Accelerator Research Center

Korea University, Sejong Campus

Outline

Introduction

Space Charge Solver with Green's Function Method

Hockney-Eastwood Algorithm

Vico-Greengard-Ferrando Truncated Green's Function Method

Results of the VGF Poisson Solver

Differential Algebra and Truncated Power Series Algebra

Advancements in SC Calculations Using DA

Summary

Introduction

Challenges in Space Charge Field Computation

- Analytical Complexity: Analytical solutions for EM and ES space charge fields are intrinsically complex.
- Particle-in-Cell (PIC) Methods: Numerous solvers rely on PIC methods with open boundary conditions.

Accelerator Optimization

• Due to limited derivative information of beam properties, gradient-free algorithms are commonly used in accelerator optimization simulations.

Techniques to Address Derivative Constraints

- Differential Algebra (DA) and Truncated Power Series Algebra (TPSA)
- DA and TPSA are effective for calculating nonlinear maps, widely adopted in accelerator codes

Differentiable Space Charge Model

• Differentiable self-consistent space charge model based on Truncated Green's function solvers

• Advantages:

• Enhances computational efficiency for beam dynamics simulations and enables effective management of differentiable space charge effects.

Space Charge Solvers with Green's Function Method HB 2023

General Solution of the Poisson Equation with Green's function

$$\phi(\vec{r}) = \frac{1}{\varepsilon_0} \int G(\vec{r}, \vec{r}') \rho(\vec{r}') d^3 \vec{r}' = \frac{1}{4\pi\varepsilon_0} \int \frac{1}{|\vec{r} - \vec{r}'|} \rho(\vec{r}') d^3 \vec{r}'$$

Consideration of Boundary Conditions

- Inclusion of boundary conditions adds complexity.
- Open boundary conditions are preferred.
- This is true if the pipe radius in an accelerator is much larger than the beam bunch transverse size

Challenges in Green's Function Approach

- Green's function offers valuable insights and computational techniques: Hockney-Eastwood Algorithm
- Long-range integration and singularities require careful consideration and implementation.

Hockney-Eastwood Algorithm

• Hockney-Eastwood Algorithm (HE):

- Utilizes Fast Fourier Transform (FFT) with zeropadding.
- Leveraging the Convolution Theorem
- Calculation of Potential:
 - Potential at mesh point (p, q) as a sum of contributions from all source points (p', q')

 $\phi(p,q) = \frac{h_x h_y h_z}{4\pi\varepsilon_0} \sum G(p,q;p',q')\rho(p',q')$

• Using Green's Function:

 Expresses the potential as the convolution of the source distribution *ρ* with the Green's function of the interaction potential *G*.

$$\phi(\vec{r}) = \frac{h_x h_y h_z}{4\pi\varepsilon_0} \mathcal{F}^{-1} \left\{ \sum \mathcal{F}\{\hat{G}\} \mathcal{F}\{\hat{\rho}\} \right\}$$

- Applicability of the Convolution Method:
 - Solves a periodic system of sources with arbitrary interaction forms.
 - No conductors or boundaries allowed.
 - Ideal for situations where the pipe radius in an accelerator significantly exceeds the beam bunch transverse size.

Truncated Green's Function Method

Vico-Greengard-Ferrando Poisson Solver

Limitation of HE FFT Method

- Utilizes Green's function with long-range definition and singularities at $\vec{r} = \vec{r}'$
- Introducing Truncated Spectral Kernel
 - Transforming the Green's function:

 $G(\vec{r}) \Rightarrow G^{L}(\vec{r}) = G(\vec{r})\operatorname{rect}\left(\frac{r}{2L}\right),$

- Conditions for Truncation
 - Truncated spectral kernel applies when $L > \sqrt{d}$ (with dimension d)
 - The indicator function rect(x) is defined as

$$rect(x) = \begin{cases} 1, & x < 1/2 \\ 0, & x > 1/2 \end{cases}$$

• Analytical Green's Function

- The Fourier transform of the Green's function is solvable analytically.
- Fourier Transform of *G*^{*L*}

$$\mathcal{F}\{G^L\} = \frac{2}{\varepsilon_0} \left[\frac{\sin\left(\frac{L|\vec{k}|}{2}\right)}{|\vec{k}|} \right]^2$$

• The potential:

$$\phi(\vec{r}) = \frac{2}{(2\pi)^3 \varepsilon_0} \int e^{i\vec{k}\cdot\vec{r}} \left[\frac{\sin\left(\frac{L|\vec{k}|}{2}\right)}{|\vec{k}|} \right]^2 \mathcal{F}\{\rho\}(\vec{k}) d^3\vec{k}$$

- Efficiency and Applicability
 - The VGF Poisson Solver simplifies potential calculation with analytical Green's function, enhancing computational efficiency.

Implementation of Algorithms and Benchmarking

• Gaussian Charge Distribution:

 $\rho(\vec{r}) = \frac{Q}{\sigma^{3}(2\pi)^{3/2}} e^{\left(-\frac{r^{2}}{2\sigma^{2}}\right)},$

- Grid Domain
 - Utilize $N_x \times N_y \times N_z$ grid domain
 - Simplifying the problem: $N = N_x = N_y = N_z$
- The Exact Poisson Solution:

$$\phi(\vec{r}) = \frac{Q}{4\pi\varepsilon_0} \frac{1}{r} \operatorname{erf}\left(\frac{r}{\sqrt{2}\sigma}\right)$$

Implementation

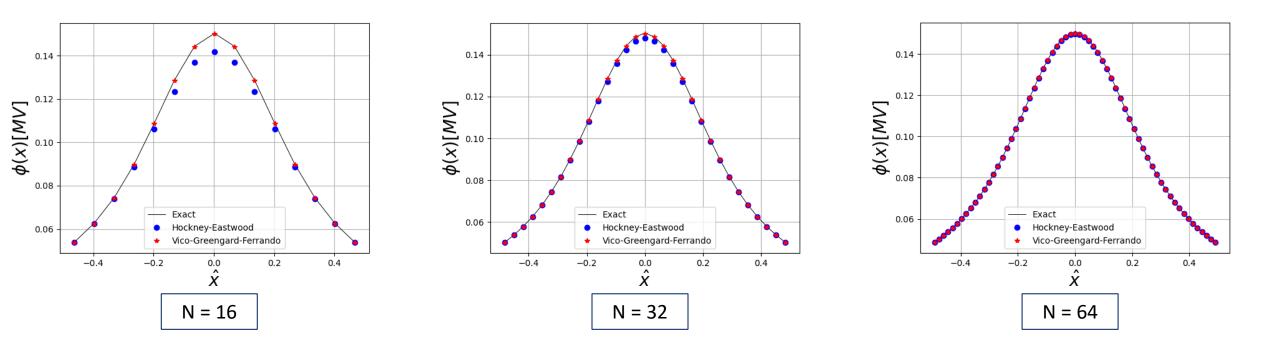
• Space Charge Potential

$$\phi(\vec{r}) = \frac{2}{(2\pi)^3 \varepsilon_0} \int e^{i\vec{k}\cdot\vec{r}} \left[\frac{\sin\left(\frac{L|\vec{k}|}{2}\right)}{|\vec{k}|} \right]^2 \mathcal{F}\{\rho\}(\vec{k}) d^3\vec{k}$$

- 1. Green's function kernel computation
- 2. Fourier Transform of the charge distribution
- 3. Inverse Fourier Transform of the convolution
- Grid Domain for Efficient Computation
 - (4N) grid domains are needed in each direction.
 - cf. (2N) number of grid domains is needed for HE

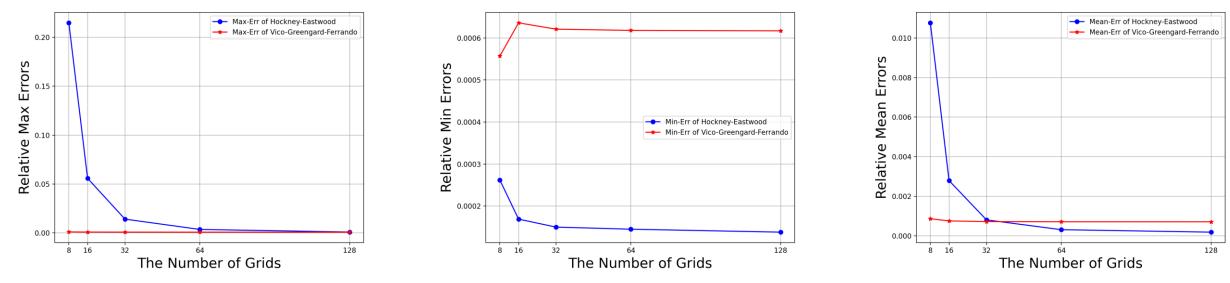
Comparison of Space Charge Solvers

Potentials along the x-axis for a different number of grids



- With a small value of *N*, the Hockney-Eastwood (HE) algorithm may exhibit significant deviations, especially at the beam center.
- Increasing the value of N, this observed deviation is reduced.

VGF vs. HE: Relative Errors



• VGF Algorithm:

- Smaller maximum and mean errors observed for small grid sizes.
- Larger minimum errors across all grid sizes.
- Maximum relative error at the grid edge.
- HE Algorithm:
 - Maximum relative error occurs at the grid center.
 - Opposite behavior observed for minimum relative error.

- Impact on Algorithm Accuracy
 - Unlike HE, the accuracy of the VGF algorithm is not significantly influenced by the number of grid sizes.
 - Highlighting the robustness and consistent performance of the VGF algorithm across different scenarios.

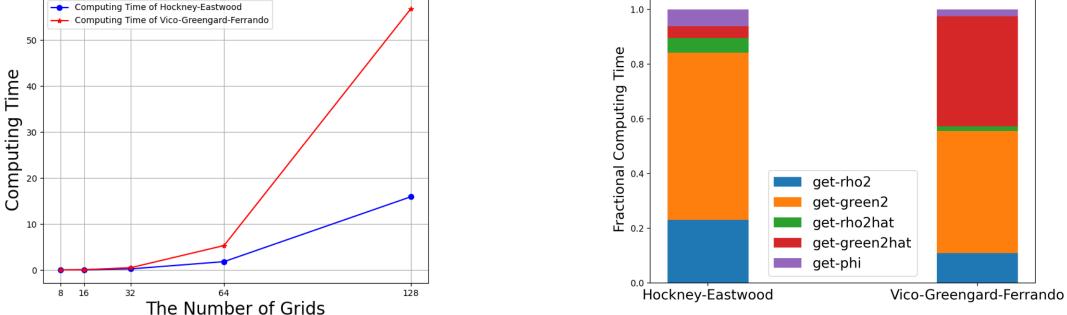
٠

•

Challenges with Increasing Grid Count

Efficiency of VGF Algorithm

In the Vico-Greengard-Ferrando (VGF) algorithm, computation time shows a noticeable increase as the number of grids rises.



Computing Time

Differential Algebra and TPSA

• Differential Algebra (DA) and Truncated Power Series Algebra (TPSA)

- DA: Algebraic methods for analytic problem solving, introduced by M. Berz in 1986.
- Wide Adoption: Implemented in accelerator simulation codes like Cosy-Infinity, PTC, MAD-X PTC, Bmad, and CHEF(MXYZPTLK).
- Truncated Power Series Algebra (TPSA)
 - TPSA employs truncated power series expansions.
 - Approximates functions by retaining a finite number of terms in power series.
 - Advantages: Generates infinite order power series, offering comprehensive and accurate calculations.
- Practical Use in Accelerator Simulations
 - TPSA is a vital tool in beam dynamics analysis.
 - It handles complex mathematical representations, ensuring precision and reliability.

Differential Algebra and TPSA (Cont'd)

• Expanding the Toolbox with TPSA Libraries

- In the realm of Differential Algebra (DA), several Truncated Power Series Algebra (TPSA) libraries have emerged independently.
- Utilizing TPSA Libraries for Space Charge Field Calculations
 - We harnessed these TPSA libraries to implement the DA method for space charge field calculations.

• The Advantage of TPSA Libraries

- These libraries offer a remarkable advantage: they are adaptable to any aspect of accelerator simulation optimization.
- Their versatility and wide applicability enhance the capabilities of DA techniques.

• Notable TPSA Libraries

- TPSA-python by H. Zhang (<u>https://github.com/zhanghe9704/tpsa</u>)
- PyTPSA by Y. Hao (<u>https://github.com/YueHao/PyTPSA.git</u>)

Basics of Truncated Power Series Algebra

Basic Operations in DA, $_1D_1$

- $(a_0, a_1) + (b_0, b_1) = (a_0 + b_0, a_1 + b_1)$
- $c(a_0, a_1) = (ca_0, vca_1)$
- $(a_0, a_1) \cdot (b_0, b_1) = (a_0 b_0, a_0 b_1 + a_1 b_0)$
- $(a_0, a_1)^{-1} = \left(\frac{1}{a_0}, -\frac{a_1}{a_0^2}\right)$
- Any special functions can be decomposed into a finite number of vector additions and multiplications
- DA can be expanded into higher order *n* with multiple variables, $v: {}_nD_v$

Examples of TPSA in $_1D_1$

• For a given function,

•
$$f(x) = \frac{1}{x + 1/x}$$

• We know that

•
$$f'(x) = -\frac{1-1/x^2}{(x+1/x)^2}$$

- Therefore, $f(3) = \frac{3}{10}$, $f'(3) = -\frac{2}{25}$
- If we use TPSA with the DA vector v = (3,1) = 3 + (0,1)

•
$$f(v) = f((3,1)) = \frac{1}{(3,1)+1/(3,1)} = \left(\frac{3}{10}, -\frac{2}{25}\right)$$

Advancements in SC Calculations Using DA

- H. Zhang et al: FMM Application (Nucl. Inst. Meth. A 645 (2011) 338-344)
 - Zhang and colleagues applied DA techniques to the Fast Multipole Method (FMM) for space charge calculations.
 - Their work offers valuable insights into the effective use of DA in space charge effect computations.
 - Reference: Nucl. Inst. Meth. A 645 (2011) 338-344
- B. Erdelyi et al: Duffy Transformation (Comm. Comp. Phys. 17 (2015), pp 47-78)
 - Erdelyi and team employed the Duffy transformation to solve the Poisson equation with Green's functions.
 - This method splits integrals into smaller domains, eliminating singularities associated with Green's functions.
- J. Qiang: TPSA for Local Derivatives (Phys. Rev. Accel. Beams 26, 024601 (2023))
 - J. Qiang's research focuses on using Truncated Power Series Algebra (TPSA) techniques to derive local derivatives of beam properties with respect to accelerator design parameters.
 - Investigates coasting beam behavior within a rectangular conducting pipe.
- Collective Impact of DA Techniques
 - These three research contributions collectively demonstrate how DA techniques are leveraged to enhance space charge calculations.
 - They offer innovative methods and solutions that contribute to the advancement of accelerator physics.

Enhancing Precision in SC Field Computations

PIC Method and Numerical Errors

- Particle-in-Cell (PIC) method is widely used in accelerator simulations but introduces computational errors due to its numerical nature.
- Numerical computation of field derivatives is also susceptible to errors.
- The Convolutional Approach
 - An alternative approach involves direct field computation using a convolutional method with the truncated Green function.
 - This method helps mitigate computational errors inherent in PIC simulations.
- Direct Electric Field Calculation
 - With the truncated Green's function, electric fields can be directly calculated.

$$\vec{E}(\vec{r}) = -\vec{\nabla}\phi = \frac{2}{(2\pi)^3\varepsilon_0} \int i\vec{k}e^{i\vec{k}\cdot\vec{r}'} \left[\frac{\sin\left(\frac{L|\vec{k}|}{2}\right)}{|\vec{k}|}\right]^2 \rho(\vec{r}')d^3\vec{k}$$

• Advantages of TPSA Techniques

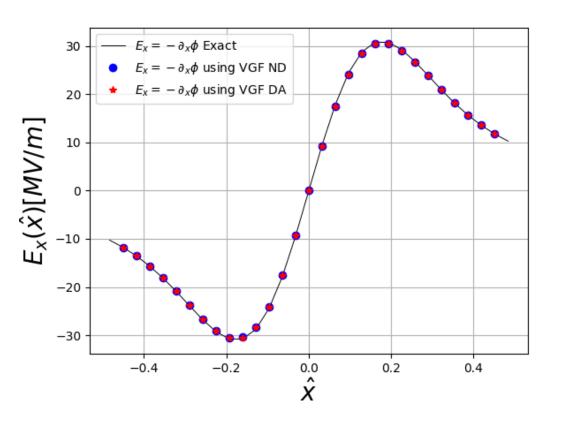
- Truncated Power Series Algebra (TPSA) techniques facilitate the automatic calculation of higher-order derivatives.
- Provide a systematic and efficient approach to handle these derivatives.
- Enable precise and reliable computations of space charge field properties concerning beam properties.

Advancing Space Charge Potential Analysis with DA

Space Charge Potential Expansion

 $\phi(\vec{r}) = \phi(\vec{r}_0) + \vec{\nabla}\phi(\vec{r}_0) \cdot (\vec{r} - \vec{r}_0) + \frac{1}{2!}(\vec{r} - \vec{r}_0) \cdot \vec{\nabla}\vec{\nabla}\phi(\vec{r}_0) \cdot (\vec{r} - \vec{r}_0) + \mathcal{O}(||(\vec{r} - \vec{r}_0)||^2)$

- Leveraging Differential Algebra (DA)
 - Utilizing a DA vector and DA operations for higher-order derivative calculations.
 - Accurate and efficient assessment of space charge potential properties using the truncated Green's function.
- DA Vector for Systematic Differentiation
 - The DA vector represents the potential function.
 - Systematic differentiation with respect to variables of interest becomes feasible.
- Comprehensive Understanding of Space Charge Potential
 - These operations enable the calculation of derivatives of arbitrary order.
 - Providing a comprehensive understanding of space charge potential and its associated properties.



Summary

• Challenges in Space Charge Field Computations

- Accelerator simulations pose complex challenges in space charge field computations.
- Hockney and Eastwood's algorithm offers efficient solutions for Poisson equations with open boundaries.

• The Vico-Greengard-Ferrando (VGF) Poisson Solver

- Implementation of VGF with a truncated Green's function method.
- Enhanced performance and accuracy in space charge field computations.
- Automatic Higher-Order Derivatives with DA
 - Differential Algebra (DA) enables automatic computation of higher-order derivatives.
 - Systematic and efficient analysis and optimization of accelerator systems.
- Differentiable Space Charge Model Integration
 - Integration of the truncated Green's function-based model into beam dynamics optimization simulations.
 - Expectations: Improved accuracy and efficiency in the optimization process.
 - Optimization with Gradient: Leveraging gradient-based optimization techniques for enhanced precision.

Thank You for Your Attention!