

Simulations and measurements of betatron and off-momentum cleaning performance in the energy ramp at the LHC

Natalia Triantafyllou, R. Bruce, M. D'Andrea, K. Dewhurst, B. Lindstrom, D. Mirarchi, S. Redaelli, F. F. Van Der Veken

HB 2023 - 11 October 2023

Contribution WEC3C3

- Introduction
- Simulation tools
- Selected results
- Conclusions and future steps

• Introduction

- Simulation tools
- Selected results
- Conclusions and future steps

4

Large Hadron Collider

- 27 km ring
- Two counter-rotating beams, 450 to 6800 GeV
- Four collision points
- In 2023 over 400 MJ beam energies stored in the machine
- Protection of machine hardware against beam losses \rightarrow Collimation system

LHC layout

HB-2023

LHC collimation system

- Remove particles at large betatron / energy offsets from beam
- Multistage collimation system: > 100 collimators around the ring
- Most collimators in IR3 / IR7: momentum / betatron cleaning
- Cleaning inefficiency: particles scattered out of collimators lost outside of collimation system
- Most critical: superconducting IR7 dispersion suppressor cleaning inefficiency < 10^{-4 (*)} → Excellent performance
- Must protect at all stages of the cycle

(*) Normalised to the losses in the collimators.

LHC operational cycle

Motivation

- Combined ramp / squeeze: challenge for LHC collimation system
- Emittance shrinks in ramp & aperture around collision points shrinks in squeeze: collimators must track both
- Requires excellent **control** & **understanding** of **collimation** system performance
 - Guarantee machine safety throughout the ramp
 - Maximize operational efficiency
- Qualification of cleaning performance in **measurements** is part of **machine commissioning**
- Simulations for performance optimization and issue mitigation: typical for other phases in cycle
- Initiated the **first simulation campaign** of the **cleaning performance** during the **ramp** (this talk):
 - Observable: distribution of losses around the machine, i.e. **loss maps**
 - Tools: **Xsuite** and its collimation package **Xcoll**

• Introduction

• Simulation tools

- Selected results
- Conclusions and future steps

Xsuite and Xcoll

- Xsuite: Python packages for particle simulations, combining functionalities of various tools used previously
- Two most relevant packages for our studies:
 - Xtrack: Symplectic 6D particle tracking through accelerator elements
 - Possibility to include effects such as synchrotron radiation, impedance, space charge etc
 - Computes optics functions and generates matched particle distributions
 - Xcoll: Simulates particle-matter interaction for collimation studies
 - External engines: Geant4, FLUKA
 - Internal engine: K2 → Everest
- Improved versatility and simplified setup compared to previous tools

G. ladarola et al, TUA211

F. F. Van der Veken et al, THBP13

Simulating betatron cleaning with Xcoll

- Qualification loss map measurements in operation: blowing up emittance with transverse damper
- Simulation approach for a given energy
 - Direct halo sampled at jaw of primary collimator
 - Simplified beam dynamics, no diffusion considered
 - + Very efficient (200 turns)
 - Count lost protons in collimators and aperture
 - Well benchmarked against previous generation tools and measurements

Example initial particles distribution for betatron cleaning simulations in x-plane

Simulating off-momentum cleaning with Xcoll

- Qualification in operation: shifting RF frequency by a few hundred Hz
- Dynamic simulation needed for RF sweep and complex beam dynamics
 - Xcoll capable of mimicking RF sweep
 - Shift applied adiabatically to all particles

$$\label{eq:chi} \boxed{\Delta \zeta = L \frac{\Delta f_{\rm RF}}{f_{\rm RF} + \Delta f_{\rm RF}}}$$

where *L* is the ring circumference, Δf_{RF} is the shift in the RF frequency f_{RF} .

Evolution of a single particle during an RF sweep in LHC

Time profile of losses during an RF sweep

- ~4000 turns needed, accounting for realistic initial particle distribution
- Time profile of losses agrees with measurement: primary bottleneck moves IR7 → IR3 at ~160 Hz (at injection)

- Introduction
- Simulation tools
- Selected results
- Conclusions and future steps

Machine configuration

- Studies conducted for **2023 proton configuration** during ramp
- Input: qualification loss maps from beam commissioning

Main settings

	Initial	Final
E _b	450 GeV	6.8 TeV
β*	11 m	2 m
V_{RF}	4 MV	12 MV
I _{KOF}	0 A	197 A
Q' _{x,y}	5 or 10	5 or 10

Collimator settings during the energy ramp for $\epsilon_{norm} = 3.5 \ \mu m$

	Initial [σ]	Final [σ]
TCP7 / TCSG7 / TCLA7	5.7 / 6.7 / 10	5 / 6.5 / 10
TCP3 / TCSG3 / TCLA3	8 / 9.3 / 12	15 / 18 / 20
TCDQ / TCSP6	8 / 7.4	7.3 / 7.3
TCT1/5/8 / TCT2	13 / 13	18 / 37

Betatron cleaning

- Good qualitative agreement between measurements and simulations
 o Highest losses in IR7: similar loss pattern
- Measurements with BLMs and simulation in Xsuite not to be compared quantitatively (see next slide)

Cleaning inefficiency simulations

where N_{loc} the local losses over distance Δs and N_{tot} is the total number of losses in

the collimation system

 $\eta = \frac{N_{\rm loc}}{N_{\rm tot}\Delta s}$

Collimation measurements vs simulations

- Beam Loss Monitors measure secondary particle showers outside of the magnet cryostat
- Simulations count protons lost in the aperture
- Measured and simulated loss maps **cannot** be **compared quantitatively**

11 October 2023

Betatron cleaning during the energy ramp

- Good qualitative agreement between measurements and simulations
 - B1: Continuous increase of the inefficiency with the energy
 - B2: Increase until ~3 TeV after which it reaches a plateau
 - Apparent correlation of inefficiency vs energy between measurement and simulation
- **Quantitatively**: inefficiency differs by up to one order of magnitude (acceptable considering known limitations)

Off-momentum cleaning

- Example positive off-momentum loss maps at injection energy, RF sweep -200 Hz
- Very good agreement between measurement and simulation
 - Highest losses in IR3

11 October 2023

- Introduction
- Simulation tools
- Selected results
- Conclusions and future steps

Conclusions and future steps

- Review of LHC collimation system performance during energy ramp at commissioning 2023
- Use of Xsuite and Xcoll for collimation simulations: very easy set up and implemented RF sweep module
- First simulation results in the energy ramp for the LHC and use of the dynamic RF sweep in Xtrack
 - Very good qualitative agreement between measurements and simulations
 - Quantitative discrepancies observed but expected: BLM signals/simulations represent secondary showers/protons impacting the aperture

Next steps

- Study possible impact of machine imperfections and collimator misalignments
- Use of the RF sweep module to simulate the high losses observed at the start of the ramp, ~2s, in IR3

Thank you for your attention

11 October 2023

HB-2023

Back up

11 October 2023

LHC multistage collimation system

RF sweep in Xcoll - details

- It has to be applied adiabatically, slower than the synchrotron oscillation period
 - For LHC, 50 mHz/turn is adequate

- It can account for realistic transverse distribution:
 - Initialise uniform distribution at selected σ ; phases in [0, $\pi/2$]
 - Weight losses in collimators/aperture from past halo scrapings data, based on starting amplitude
 - Flexibility in options based on the simulation scenario

Initial particles distribution for betatron cleaning simulations in x-plane

Initial distributions used in Xcoll simulations

Betatron loss maps

Off momentum loss maps

Refining loss location in Xtrack

- Before tracking: aperture markers are installed at locations of known aperture changes
- **During tracking:** Tracking stops for particles found to be outside of the aperture marker. Typically a few meters uncertainty in their actual loss location
- After tracking: Higher precision is required for collimation studies
 - Achieved by further post processing → **Backtracking in Xtrack**
 - Further aperture markers are installed every 10 cm and the particles are tracked backwards performing linear interpolation from its initial location till it hits the more refined aperture.

