3-D coherent dispersion effect with space charge

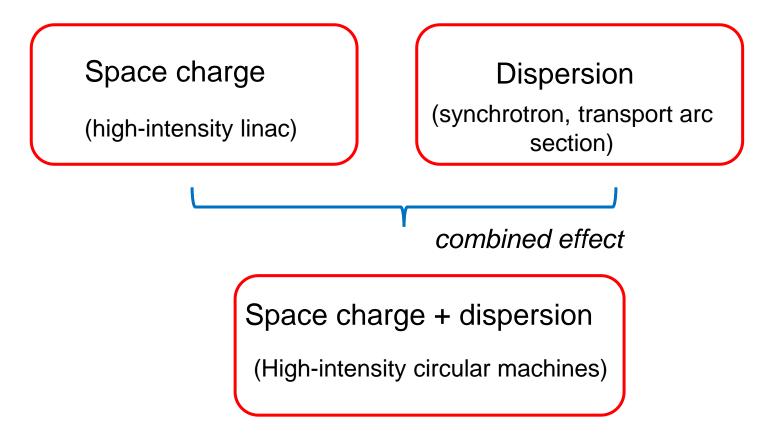
Yao-shuo Yuan (IHEP CSNS)

Outline

- 1. Combined effect of space charge and dispersion
- 2. Space-charge-modified dispersion function
- 3. Coherent dispersion mode
- 4. Beam instabiltiies with dispersion
- 5. Splitting effect in 3-D bunched beam

Combined effect of space charge and dispersion

> Two fundamental effects of accelerators



➤ Beam dynamics in high-intensity circular accelerator are subject to **combined effect** of space charge and dispersion

Combined effect of space charge and dispersion

➤ Dispersion effect (only) increase horizontal beam size

➤ Space charge (only)
 ✓ modify the lattice functions
 ✓ envelope modes/ instabilities

✓ Increase horizontal beam size
 ✓ modify the lattice functions
 ✓ coherent dispersion (envelope) mode

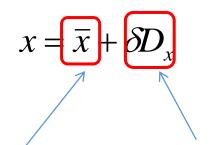
- ✓ induce coherent beam instabilities

Tools: combined rms envelope approach

> Starting potint Hamiltonian for single particle with s.c. and disp.

$$H = \frac{1}{2} \left(p_x^2 + p_x^2 \right) + \frac{\kappa_{x0}(s)}{2} x^2 + \frac{\kappa_{y0}(s)}{2} y^2 + \frac{m^2 c^4}{E_0^2} \delta^2 - \frac{x}{\rho(s)} \delta + V_{sc}(x, y, s)$$

➤ Using Venturnin-Reiser and Lee-Okmoto theory



$$x' = \overline{x}' + \delta D_x'$$

 $y = \overline{y}$

$$y' = \overline{y}'$$

Betatron coordinate

with s.c.

Off-momtenum coordinate with s.c.

Two fundamental articles:

M. Venturini and M. Reiser, Phys. Rev. Lett. 81, 96 (1998)

S. Y. Lee and H. Okamoto, Phys. Rev. Lett. 80, 5133 (1998)

Tools: combined rms envelope approach

- Following V-R and L-O theory, beam coherent motion
 dispersion motion
- > How to seperate/identify the two parts in the total beam size?
 - By defining the space charge-modified dispersion

$$\frac{\mathrm{d}^2 D_x}{\mathrm{d}s^2} + \left[\kappa_{x0}(s) - \frac{\mathrm{K}_{sc}}{2X(X+Y)}\right] D_x = \frac{1}{\rho(s)}$$

Space charge depression

X,Y: total beam size

Space-charge modified dispersion function

$$\frac{\mathrm{d}^2 D_x}{\mathrm{d}s^2} + \left[\kappa_{x0}(s) - \frac{\mathrm{K}_{sc}}{2X(X+Y)}\right] D_x = \frac{1}{\rho(s)}$$

- \triangleright Ansatz 1 $\langle \bar{x}\delta \rangle = 0$
 - Second order moment $X^2 = (\bar{x} + \delta D_x)^2 = \bar{x}^2 + 2D_x \langle \bar{x} \delta \rangle + (\delta D_x)^2 = \bar{x}^2 + (\delta D_x)^2$ of the total beam size $= \sigma_x^2 + \sigma_p^2 D_x^2$
- ➤ Ansatz 2
 - rms equivalence of Frank Sacherer holds with dispersion

$$\left\langle x \frac{\partial V_{sc}}{\partial x} \right\rangle = -\frac{K_{sc}}{2} \frac{X}{X + Y}$$

Space-charge modified dispersion function

> With the definition of Dx, the parts are independent with each other.

$$X^{2} = (\bar{x} + \delta D_{x})^{2} = \bar{x}^{2} + (\delta D_{x})^{2} = \sigma_{x}^{2} + \sigma_{p}^{2} D_{x}^{2}$$

Envelope rms equation with dispersion

> By using the coordinate transformation

$$\varepsilon_{dx} = \sqrt{\langle \overline{x}^2 \rangle \langle \overline{x}'^2 \rangle - \langle \overline{x}' \overline{x} \rangle^2}$$

> The rms envieope equaion combined with dispersion

$$\frac{\mathrm{d}^2 \sigma_x}{\mathrm{d}s^2} + \left[\kappa_{x0}(s) - \frac{\mathrm{K}_{sc}}{2X(X+Y)} \right] \sigma_x - \frac{\varepsilon_{dx}^2}{\sigma_x} = 0$$

$$\frac{\mathrm{d}^2 \sigma_y}{\mathrm{d}s^2} + \left[\kappa_{y0}(s) - \frac{\kappa_{sc}}{2Y(X+Y)}\right] \sigma_y - \frac{\varepsilon_{dy}^2}{\sigma_y} = 0$$
Pioneer works on the general envelope equation set

$$\frac{d^2 D_x}{ds^2} + \left[\kappa_{x0}(s) - \frac{K_{sc}}{2X(X+Y)} \right] D_x = \frac{1}{\rho(s)}$$
 Olsen, Phys. Rev. Signature of Beams 2, 114202 (1999).

Pioneer works on the genelized

J. A. Holmes, V. V. Danilov, J. D. Galambos, D. Jeon, and D. K. Olsen, Phys. Rev. ST Accel.

CFD model

 $K_{r}(S)$

- > Constant Focusing channel with Dispersion (smooth approximation model)
 - · e.g. bending solenoid focusing structure, the matched beam sizes are given by

$$\left[\kappa_{x0}(s) - \frac{K_{sc}}{2X(X+Y)}\right]D_{x0} = \frac{1}{\rho(s)}$$

$$\sigma_{x0} = \left(\frac{\varepsilon_{dx}^2}{\kappa_x(s)}\right)^{\frac{1}{4}}$$

$$\left[\kappa_{y0}(s) - \frac{\kappa_{sc}}{2Y(X+Y)}\right] \sigma_{y0} - \frac{\varepsilon_{dy}^{2}}{\sigma_{y0}} = 0$$

$$\sigma_{y0} = \left(\frac{\varepsilon_{dy}^{2}}{\kappa_{y}(s)}\right)^{\frac{1}{4}}$$

$$\kappa_{y}(s)$$

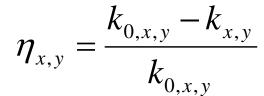
Characterisitcs of space-charge modified dispersion

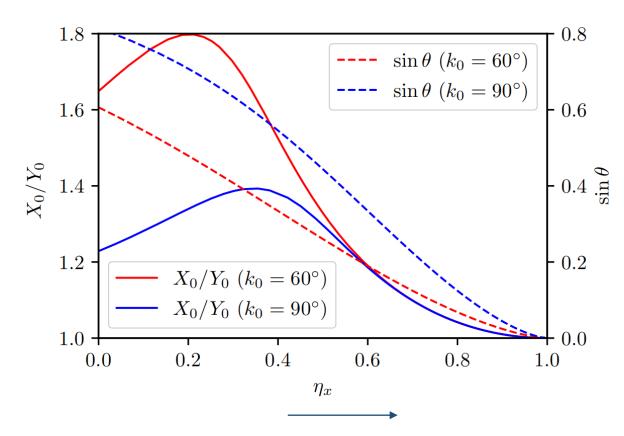
> Two characterisites of the s.c.-modified dispersio can be shown by CFD

(1) For matched beams

- As beam current increasing, the beam experiences two stages
 - X/Y increasing:
 dispersion dominated stage
 - 2. X/Y decreasing:space-charge dominated stage

Tune depression





beam current increasing

Red: phase advance 60 deg

Blue: phase advance 90 deg

Characterisitcs of space-charge modified dispersion

(2) For mismatch oscillations

> Coherent oscillaton of mismatched beams can be analyzed via perturvation on the combined envelope equation

$$\xi'' + a_0 \xi + a_1 \eta + a_2 d_x = 0$$

$$\sigma_x = \sigma_{x,m} + \xi$$

$$\sigma_y = \sigma_{y,m} + \eta$$

$$D_x = D_{x,m} + d_x$$

$$d_x'' + \frac{a_2}{\sigma_n^2} \xi + \frac{a_4}{\sigma_n^2} \eta + a_5 d_x = 0$$

 \triangleright Here coefficients a_1 to a_5 are functions of matched beams and emittance

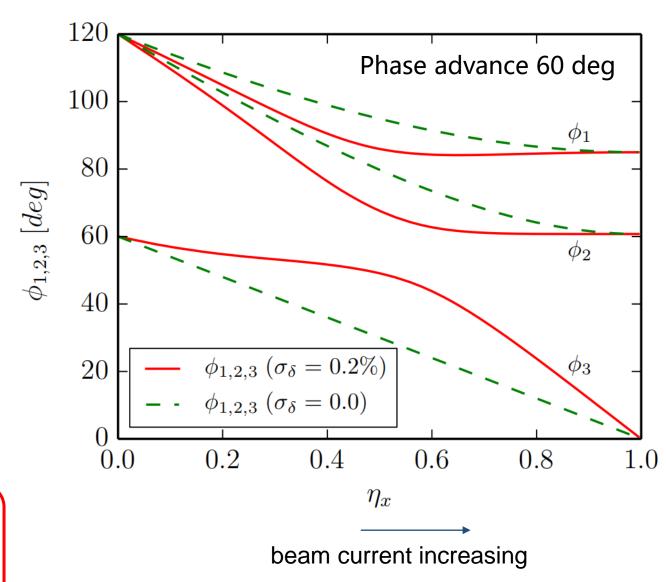
Characterisitcs of Space-charge modified dispersion

(2) For mismatch oscillations

- Envelope modes ϕ_1 , ϕ_2 and dispersion mode ϕ_3 can be identified from the coefficient matrix of a1 to a5
- The limit of the three modes are equal to that in the case without dispersion

Pioneer works on dispersion mode

M. Ikegami, S. Machida, and T. Uesugi, Phys. Rev. ST Accel. Beams 2, 124201 (1999)

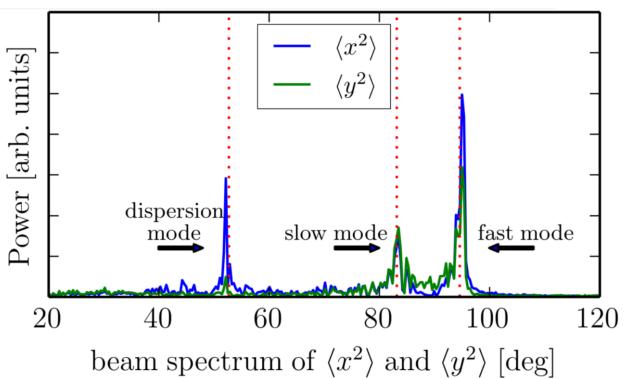


Coherent oscillations and dispersion mode

> PIC simulations are in agreement with the numerical envelope approach

> The frequency of the three modes can be obtained from the beam spectrum of the second order moments

$$\langle x^2 \rangle$$
 and $\langle y^2 \rangle$



Coherent beam instabilities with dispersion

- > For alternating focusing structure, the mismatched oscillaiton can drive instabilites
- > The most well-known is the envelope instability (second order even instability)

Dispersion+space charge
drive the dispersion instability

Coherent beam instabilities with dispersion

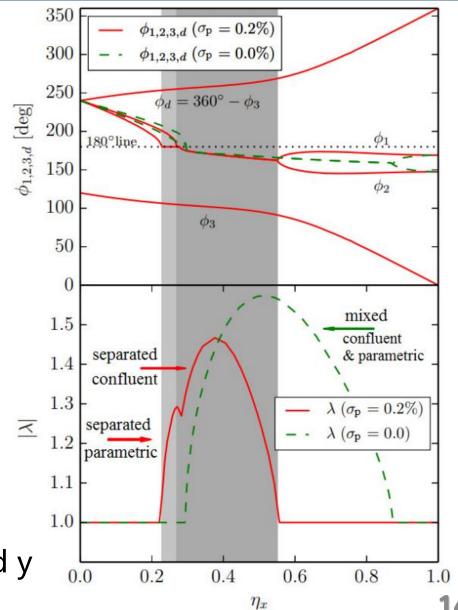
➤ Modified 90 envelope instability

Dispersio-modified 90 envelope instability

seperated parametric resonance

seperated
seperated
seperated confluent resonance

Dispersion breaks the focusing symmetry of x and y



Coherent beam instabilities with dispersion

- Dispersion-induced instability
 - Dispersion mode is on resonacen with periodic focusing structure
 - criteria: phase advance > 120 degree
- > Compared with: Envelope instability
 - Envelope modes are resonant with periodic focusing structure
 - Criteria: phase advance > 90 degree

3-D bunch case

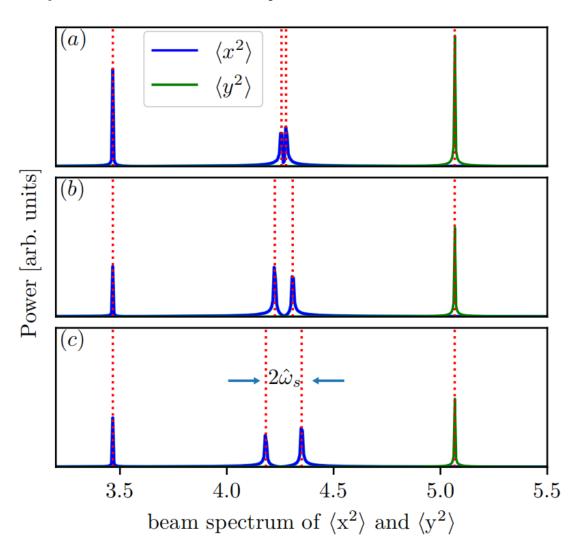
- > For 3D bunches, dispersion mode will be split due to the synchrotron motion
 - > Analysis:

$$\begin{cases} \xi'' + a_0 \xi + a_1 \eta + a_2 d_x = 0 \\ \eta'' + a_1 \xi + a_3 \eta + a_4 d_x = 0 \end{cases}$$

$$d_x'' + \frac{a_2}{\sigma_p^2} \xi + \frac{a_4}{\sigma_p^2} \eta + a_5 d_x = 0$$

$$X^2 = \langle x^2 \rangle = (\sigma_x + \xi)^2 + (D_x + d_x)^2 \sigma_p^2$$

$$Y^2 = \langle y^2 \rangle = (\sigma_y + \eta)^2$$



3-D bunch case

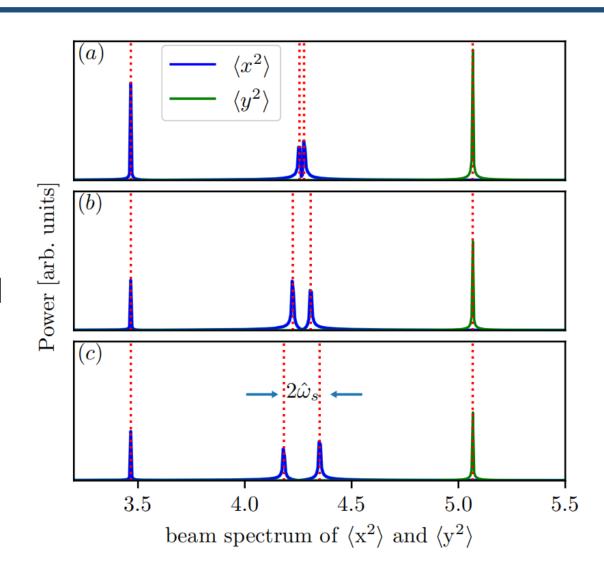
➤ For 2-D coasting beams

$$\sigma_p = \text{const}$$
 $(D_{x0} + d_x)\sigma_{p0}$

> For 3-D bunched beams

$$\sigma_p = \sigma_{p0} + \Delta \sigma_p(t)$$
 $(D_{x0} + d_x)[\sigma_{p0} + \Delta \sigma_p(t)]$

➤ The width of the split "gap" depends on the synchrotron frequency



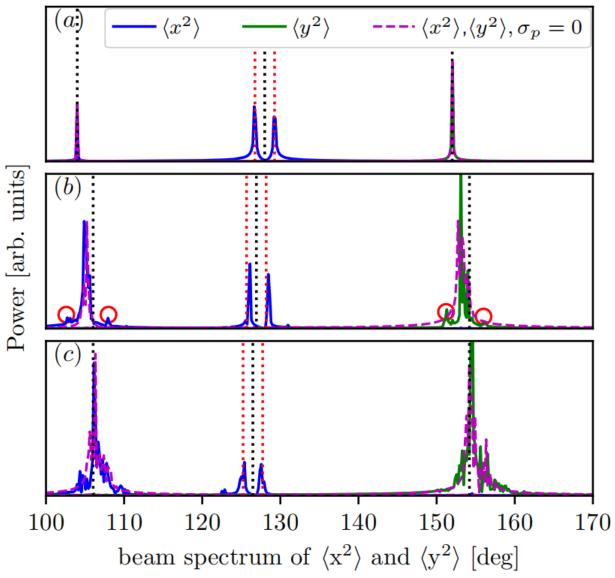
3-D bunch case

- Sidebands appear around the envleope modes
- ➤ In the presence of space charge, the split of dispersion mode is coupled to the envelope modes
- > space-charge coupling between

$$(D_{x0} + d_x)[\sigma_{p0} + \Delta\sigma_p(t)]$$

and

 ξ , η



Conclusion

- > Combined effect of space charge and dispersion has been investigated by using the envelope equation set including dispersion
- For 2-D coasting beams,
 - Envelope instabilies are modified
 - Disperison-induced instability
- > For 3-D bunced beams, dispersion mode is split because of synchrotron motion

In the future

> Chromoticity effect on the dispersion mode

Thanks for your attention!