Transmission through graphene of electrons in the 30 - 900 eV range

<u>Alice Apponi</u>, Domenica Convertino, Neeraj Mishra, Camilla Coletti, Mauro Iodice, Franco Frasconi, Federico Pilo, Gianluca Cavoto, Alessandro Ruocco

Collaboration meeting RD51 - 14.06.2022

Graphene transparency: a growing topic of interest

Graphene:

- Single sheet 1 atom thick
- C atoms sp₂ hybridised (planar, 120°) arranged in hexagons

Transmission of low-energy electrons through graphene:

- Many experiments several electron energy ranges
- Only a few below 1 keV
- Discussion still open
- Interesting for novel detectors

Alice Apponi - 14.06.2022

MicroMegas

GEM

Integration of graphene in MPGD Transparency to electrons Impermeability to atoms

Tritiated graphene target Measure the β -electrons

Graphene On meSH collaboration - GOSH

IIT

INFN Pisa TEST BENCH

Differential pressure tests

Gas permeability

Alice Apponi - 10.05.2022

Labs of Pisa

Graphene CVD growth Transfer on TEM grids Raman spectroscopy

LASEC Lab Roma Tre

X-ray and electron spectroscopies

Electron transmission

ANDROMeDa meeting

Sample preparation: graphene growth and transfer on TEM grid

Mono-/tri- layer graphene on nickel TEM grid:

- G2000HAN Ted Pella Inc.
- * 2000 mesh per inch \rightarrow 12.5 μ m pitch
- Hole width 6.5 μ m
- Nominal geometrical transmission 41%

 $PMMA = Poly-methyl-methacrylate (C_5O_2H_8)_n$

Alice Apponi - 14.06.2022

Measurements of graphene on TEM grids

- Graphene characterisation with spectroscopy:
- Micro-Raman
- X-rays Photoemission Spectroscopy (XPS)
- Electron Energy Loss Spectroscopy (EELS)

- Transmission of low-energy electrons (30-900 eV):
- Fixed point measurement as a function of the energy
- 2D maps of the grids at fixed energies

Alice Apponi - 14.06.2022

Raman spectra: full coverage good quality graphene

MONO-layer full coverage

Alice Apponi - 14.06.2022

TRI-layer full coverage

The XPS layout

Alice Apponi - 14.06.2022

Monolayer C 1s: high contamination

8

Intensity (arb. unit)

500°C in vacuum annealing removes contamination

- C 1s spectra:
- Contaminants removed •
- Mainly sp₂ component

O 1s spectra:

Alice Apponi - 14.06.2022

- Oxygen significantly removed

- Ni 2p_{3/2} spectra:
- Ni oxide reduced
- Metallic Ni increased
- Metallic Ni satellite appears

XPS: good quality graphene

Alice Apponi - 14.06.2022

The EELS layout

Custom-made monochromatic electron gun:

- Continuous electron beam
- Tuneable energy 30 900 eV
- rightarrow Resolution = 45 meV

Alice Apponi - 14.06.2022

Comparison of the EELS spectra

Alice Apponi - 14.06.2022

Primary electron energy 90 eV

Comparison of the EELS spectra

Primary electron energy 90 eV

Alice Apponi - 14.06.2022

EELS on monolayer: suspended graphene

Alice Apponi - 14.06.2022

EELS: suspended graphene

Trilayer graphene			
Component	Energy loss	Area	FWHM
	[eV]		[eV]
π -plasmon	6.8	410	2.2

 π -plasmon energy shifted increasing the number of graphene layers ~1 eV wrt monolayer

Transmission measurement: average on several grid holes

Monochromatic electron gun:

- Continuous electron beam
- Tuneable energy 30 900 eV
- rightarrow Resolution = 45 meV

Alice Apponi

Dimension outline:

- Diameter 3 mm
- Effective diameter 2 mm
- ♣ 2000 mesh per inch \rightarrow 12.5 µm pitch
- Hole width 6.5 μ m
- Beam size ~ 0.5 mm

Transmission measurement: the method

Check stability with current measurement before and after

Alice Apponi - 14.06.2022

Absolute current measurement before and after the grid

Current stability ~ 3%

- rightarrow Current stability \rightarrow before after difference / average
- Picoammeter accuracy 0.5%
- Uncertainty essentially due to current stability

Transmission of grid without graphene ~ 39%

Alice Apponi - 14.06.2022

Transmission through full coverage mono- and tri- layer

Alice Apponi - 14.06.2022

2D maps at fixed electron energy to check homogeneity

Monolayer

Current normalised to the maximum

Trilayer

- 0.0

The nature of the measured electrons

Alice Apponi - 14.06.2022

Elastically scattered electrons contribute less than 10%

 $N_{\rm s}$ = # elastically scattered electrons $N_i = \#$ incident electrons

Taken from NIST database

[A. Jablonski, F. Salvat, C. J. Powell and A. Y. Lee, NIST **Electron Elastic-Scattering Cross-Section Database Version** 4.0. NIST Standard Reference Database Number 64, National Institute of Standards and Technology, Gaithersburg, MD, 20899, 2016]

Alice Apponi - 14.06.2022

Sample preparation:

Full coverage mono- and tri- layer graphene reached

Graphene characterisation with spectroscopy:

- Contaminants removed with 500°C annealing
- Good quality graphene, C 1s mainly sp₂
- * Footprint of suspended monolayer graphene (38% π -plasmon ratio, 39% measured open area!)
- * Energy shifted π -plasmon for trilayer graphene

Transmission of low-energy electrons (30-900 eV): ✤ 70% to 90% transmission through monolayer graphene 10% to 80% transmission through trilayer graphene

Alice Apponi - 14.06.2022

To conclude

- Main contribution due to the transmitted beam due to non-scattered electrons

Backup slides

GRAPHENE ON MESH Collaboration Is it possible to replace the "micromesh" of a Micro-megas with a (grid supported) graphene film?

- Operating a MPGD at low pressure is a key factor to reconstruct the tracks of very low energy particles (< 100 keV)
- Lowering the gas pressure in the amplification gap increase the discharge probability and limit the detector gain
- The graphene is considered to be completely impermeable to all gases. If the graphene transparency is enough high, we could replace the classical mesh with a graphene film and work with **differential** pressure between the DRIFT and the AVALANCHE region

100 keV Helium in pure Argon at 20°C and 100 mbar

Full coverage achieved for mono- and tri- layer graphene

MONOLAYER

Alice Apponi - 14.06.2022

Transmission evaluated in different points of the map

ANDROMeDa meeting

C 1s post-annealing: comparison with HOPG

Intesity

Alice Apponi - 14.06.2022

Collaboration meeting RD51

30

