

Development of ultra-low mass and high-rate capable DLC-RPC for background reduction in MEG II experiment

Masato Takahashi^A (^AKobe University)

Sei Ban^B, Kei leki^B, Atsuhiko Ochi^A, Rina Onda^B, Wataru Ootani^B, Atsushi Oya^B, Kensuke Yamamoto^B (^AKobe University, ^BThe University of Tokyo)

Outline

Introduction

- MEG II experiment
- Radiative Decay Counter
- DLC-RPC for upstream RDC

➢Performance study

- Timing resolution and efficiency for MIP at low rate
- High-rate performance for low-momentum muon

Summary and prospects

MEG II experiment

►MEG II searches for $\mu^+ \rightarrow e^+ \gamma$ decay

Charged lepton flavor violating decays

>Detects the energy, time, and direction of e^+ and γ coming from the decay of muons at the target

- $\cdot \gamma$ detector
 - \rightarrow · Liquid Xe detector (γ energy, time, and position)
- e⁺ spectrometer
 - \rightarrow · Drift chamber
 - (e⁺ energy and direction)
 - Timing counter

(e⁺ time)

COBRA magnet

(Bending e⁺ track)

- The MEG II experiment installs a new detector, Radiative Decay Counter
 - To identify background γ

How is the $\mu^+ \rightarrow e^+ \gamma$ signal detected?

>Detect e^+ and γ and look for events with signal features

What are the backgrounds?

Why do we need a Radiative Decay Counter?

Why do we need a Radiative Decay Counter?

Radiative Decay Counter

Downstream RDC has already been installed

Upstream RDC is under development

• High-rate ($1 \times 10^8 \,\mu/s$, 4 MHz/cm² at center), low-momentum (28 MeV/c) muon beam passes through

➢Requirements to upstream RDC

1. Material budget:

- < 0.1% radiation length
- \Rightarrow muon beam with 28 MeV/c must pass through the detector
- 2. Rate capability:
- 3. Radiation hardness:
- 4. MIP efficiency:
- 5. Timing resolution:
- 6. Detector size:

- 4 MHz/cm² of muon beam
 > 60 weeks operation
- > **90**%

< 1 ns

20 cm (diameter)

DLC-RPC for the upstream RDC

detector

DLC-RPC structure

14th. June. 22

RD51 collaboration meeting - Masato Takahashi

was presented at WG6

R&D History

≻A series of R&D began in 2016

Ref:<u>https://conference-indico.kek.jp/event/70/contributions/1398/</u> (CLFV) arXiv:2109.13525 (TIPP)

14th. June. 22

DLC-RPC for upstream Radiative Decay Counter

➤MEG II DLC-RPC design → 4-layer DLC-RPC

Stacked to increase detection efficiency

 $\epsilon_n = 1 - (1 - \epsilon_1)^n$

n: number of layers, ϵ_n : n-layer efficiency, ϵ_1 : single-layer efficiency

Material budget

- Polyimide 50 μm \rightarrow 0.018% X_0
- Aluminum 30 nm $0.0034\% X_0$ \rightarrow
- \rightarrow 0.095% radiation length

Achieved < 0.1% radiation length

Al readout strip (100 nm) 🕇

RD51 collaboration meeting - Masato Takahashi

Stacking

Outline

Introduction

- MEG II experiment
- Radiative Decay Counter
- DLC-RPC for upstream RDC

➢Performance study

- Timing resolution and efficiency for MIP at low rate
- High-rate performance for low-momentum muon

Summary and prospects

High-rate performance tests

- High-rate performance in low-momentum muon
 - The beam test took place in December 2020
 - Muon beam at $\pi E5$ of Paul Scherrer Institut ($10^8 \mu^+/s$)
 - Measurement of response to low-momentum muon
 - Voltage drop evaluation in high-rate low-momentum muon

Prototype detector for performance study

MIP detection with single-layer

➤Test with positron from muon decay

• Positron from muon decay with $\mathcal{O}(1 - 10 \text{ kHz/cm}^2)$ rate

MIP detection with single-layer

Timing resolution and efficiency are measured with single-layer

Requirements fulfilled for

- Timing resolution: < 1 ns
- $\label{eq:single-layer efficiency:} \bullet \ Single-layer \ efficiency: > 40\%$
 - Required to achieve 90% in the 4-layer DLC-RPC from the equation $\epsilon_n = 1 (1 \epsilon_1)^n$

MIP detection with multi-layer

- Efficiency expected to improve as $\epsilon_n = 1 (1 \epsilon_1)^n$
- Beta-ray from ⁹⁰Sr with $O(1 \text{ kHz/cm}^2)$ rate

In this test, gas composition differs from other tests: R134a / SF_6 = 93 / 7 %

- Measured efficiency with multi-layer found to follow the equation
 - 90% detection efficiency is achievable with 4-layer in low-rate
 - Issue: Discharge due to electrode imperfect flatness

Rate capability of DLC-RPC

> Determined by the voltage drop (δV) due to current on DLC

- Rate capability is evaluated by estimating voltage drop in low-momentum muon beam
 - Voltage drop estimated
 - By comparison of pulse height distribution in low-rate muon beam
 - Using voltage drop equation

Response to low-momentum muon at low rate

MIP detection in high-rate muon beam

Measured MIP positron in high-rate and low-momentum muon beam

Rate capability estimation

 \succ Voltage drop = 100 - 150 V

>50% MIP e⁺ efficiency with single-layer \rightarrow Prototype detector has a rate capability of 1 MHz/cm²

Rate capability estimation

Estimate the voltage drop from the following equation:

Estimated voltage drop = 110 - 170 V

 \rightarrow Agreement at ~10% with evaluation by pulse height distribution

Outline

Introduction

- MEG II experiment
- Radiative Decay Counter
- DLC-RPC for upstream RDC

➢Performance study

- Timing resolution and efficiency for MIP at low rate
- High-rate performance for low-momentum muon

Summary and prospects

Summary

- Ultra-low mass and high-rate capable RPC with DLC electrodes is under development for MEG II upstream Radiative Decay Counter
 - Detector for MIP positron in high-rate muon beam background
- ➢ Prototype DLC-RPC Performance
 - Achieved requirements
 - Material budget: 0.095% radiation length $\rightarrow < 0.1\%$ radiation length is achieved
 - Timing resolution: 160 ps with single-layer $\rightarrow < 1$ ns is achieved
 - MIP efficiency: 60% with single-layer $\rightarrow > 40\%$ with single-layer is achieved NOTE: This detection efficiency in low-rate performance test

Not yet achieved requirement

- Rate capability: 1 MHz/cm^2 of muon $\rightarrow 4 \text{ MHz/cm}^2$ of muon is not achieved
 - At higher rate, detection efficiency is < 40% due to voltage drop

We should improve the electrodes to achieve the rate capability requirement

Prospects - Design for higher rate capability

Prospects – Planed studies

➢Planned studies

- New prototypes with improved electrode structure under construction
- · Rate capability test using new prototypes in this year
 - → If performance can be demonstrated with a prototype, the requirements can be achieved with a large detector
- Work on another remaining requirement, Radiation-hardness
 - · Accelerating aging test planned using fast neutron, X-ray

Aiming for installation next year

New prototype to be used in 2022 beam test

e⁺ from RMD distribution and μ^+ beam profile

Both positron from the RMD and muon beams are most abundantly distributed at the center of the beam line

\rightarrow No holes can be drilled in the detector

Positrons are missed

Rate capability

The voltage drop due to high current on resistive electrodes

- Current paths are different between conventional and DLC-RPC
- ➡ In DLC-RPC, the distance between conductors affects voltage drop

Response to low-momentum muon at low-rate

Observed signal size for low-momentum muon is almost the same as for MIP positron

- Energy deposit: $\left(\frac{dE}{dx}\right)_{\text{low-momentum }\mu} \sim 10 \times \left(\frac{dE}{dx}\right)_{\text{MIP e}^+}$
 - \rightarrow Avalanche charge saturated due to the space charge effect
 - → Better for rate capability because voltage drop is mitigated

Design for higher rate capability

➤Surface resistivity of DLC

- Too low \rightarrow Unstable operation due to discharge
- Too high \rightarrow Larger voltage drop
- ➢Previous stability study
 - 1 M Ω /sq.: Unstable
 - $\cdot > 20 30 \text{ M}\Omega/\text{sq.:}$ Stable
 - \rightarrow Production with $\rho_S = 10 \text{ M}\Omega/\text{sq}$.
 - In this case, $\ell_{\rm pitch}$ was designed to be 1 cm so that $\delta {
 m V} < 100 \, {
 m V}$

≻Option of parameters

- If unstable operation with $\rho_S = 10 \text{ M}\Omega/\text{sq}$.
 - + $ho_S = 20 \ {
 m M}\Omega/{
 m sq.}$, $\ell_{
 m pitch} = 8 \ {
 m mm}
 ightarrow \delta {
 m V} \sim 100 \ {
 m V}$
 - Increase ho_S and narrow ℓ_{pitch}

Kensuke presented manufacturing efforts to achieve this goal at WG6

