

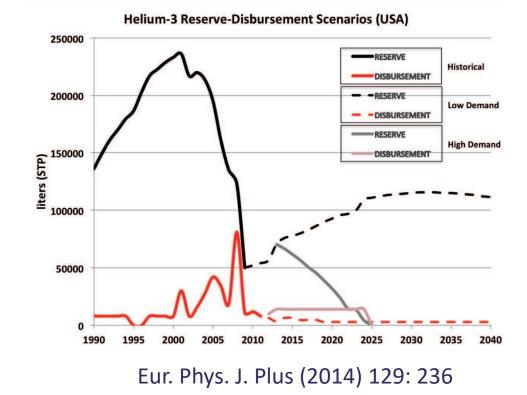
ISIS Neutron and Muon Source

µRWELL operation in ³He/CF₄ gas mixtures

Raheema Hafeji Davide Raspino Erik Schooneveld Nigel Rhodes

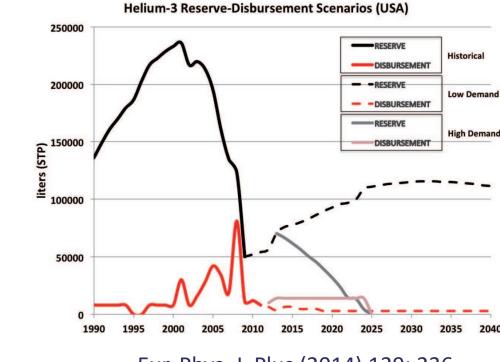
RD51 Collaboration Meeting Jun 13 – 17, 2022

Outline


- Why are we still developing ³He based neutron detectors?
- Why do we need CF₄?
- Gain Measurement of μ RWELL in ³He and CF₄
- Impact of these results
- Future measurements

New ³He detectors for neutron scattering

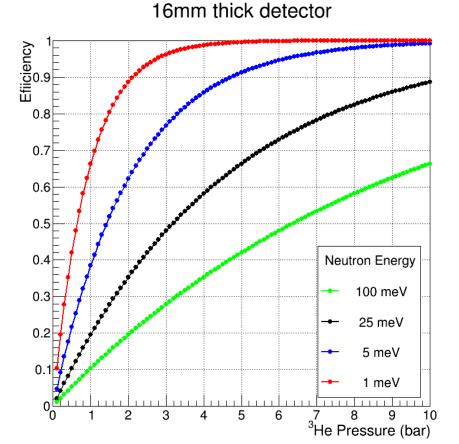
- 2009 increase cost of ³He
- Very low availability
- Situation improving
- Budget and technical challenge for large area neutron detectors
- Small area (200 x 200 mm²)
- High efficiency (> 70% at 25 meV)
- High rate (>1 MHz/full detector area)
- High spatial resolution (<1 mm FWHM)



New ³He detectors for neutron scattering

- 2009 increase cost of ³He
- Very low availability
- Situation improving
- Budget and technical challenge for large area neutron detectors
- Small area (200 x 200 mm²)
- High efficiency (> 70% at 25 meV)
- High rate (>1 MHz/full detector area)
- High spatial resolution (<1 mm FWHM)
- MPGD ideal solution

Eur. Phys. J. Plus (2014) 129: 236



³He/CF₄ gas mixtures

 $n + {}^{3}\text{He} \rightarrow {}^{3}\text{H} + {}^{1}\text{H} + 764 \text{ keV}$

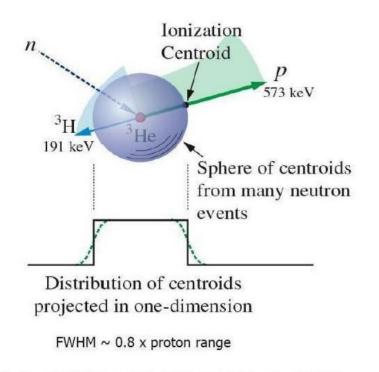
Efficiency = 1. – exp (-
$$n \cdot P \cdot \sigma \cdot d$$
)

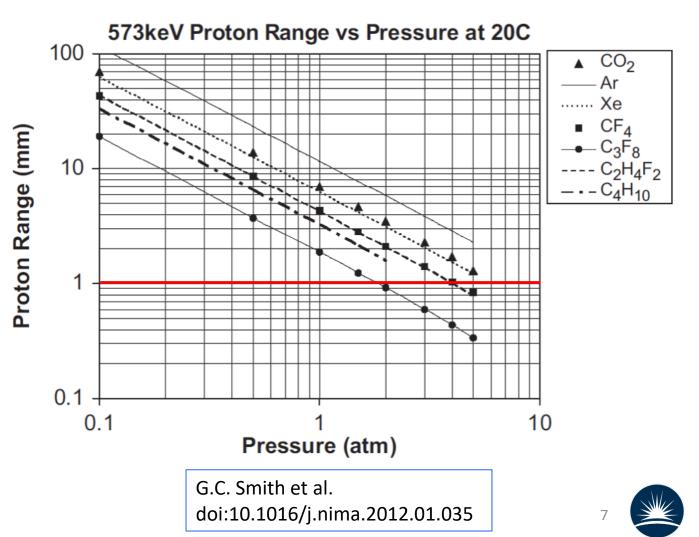
$$\begin{split} n &= number \; density = 2.7 \; x \; 10^{19} \, / cm^3 \text{-bar} \\ P &= gas \; pressure \; [bar] \\ \sigma(\lambda) &= cross \; section \; [cm^2] \; (function \; of \; \lambda) \\ d &= gas \; depth \; [cm] \end{split}$$

³He/CF₄ gas mixtures

$n + {}^{3}\text{He} \rightarrow {}^{3}\text{H} + {}^{1}\text{H} + 764 \text{ keV}$

- projected in one-dimension
 - FWHM ~ 0.8 x proton range


V. Radeka, DOE BES Neutron&Photon Detector Workshop, Aug 1-3, 2012

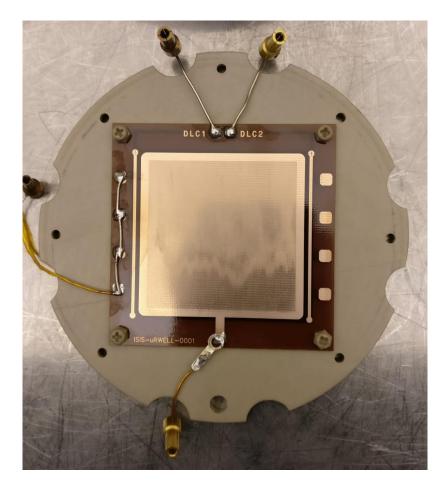

³He/CF₄ gas mixtures

 $n + {}^{3}\text{He} \rightarrow {}^{3}\text{H} + {}^{1}\text{H} + 764 \text{ keV}$

V. Radeka, DOE BES Neutron&Photon Detector Workshop, Aug 1-3, 2012

µRWELL setup at ISIS

- Sealed vessel
- Certified up to 7bar
- 1bar ³He
- 1 to 6 bar of CF₄ in step of 0.5 bar
- Active area 50x50mm²
- DLC 80MΩ/□
- Anode segmented in four strips
- Joined together for this test
- Drift volume 16mm thick
- Bipolar preamp



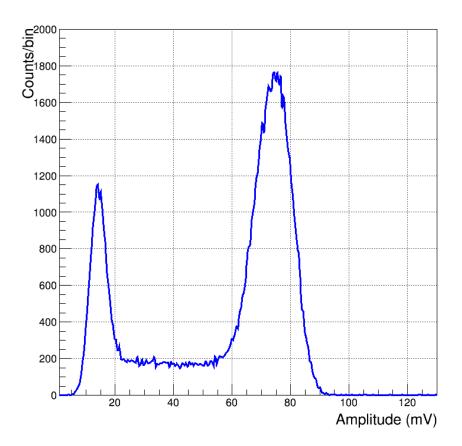
µRWELL setup at ISIS

- Sealed vessel
- Certified up to 7bar
- 1bar ³He
- 1 to 6 bar of CF_4 in step of 0.5 bar
- Active area 50x50mm²
- DLC $80M\Omega/\Box$
- Anode segmented in four strips
- Joined together for this test
- Drift volume 16mm thick
- Bipolar preamp

µRWELL setup at ISIS

- Sealed vessel
- Certified up to 7bar
- 1bar ³He
- 1 to 6 bar of CF_4 in step of 0.5 bar
- Active area 50x50mm²
- DLC $80M\Omega/\Box$
- Anode segmented in four strips
- Joined together for this test
- Drift volume 16mm thick
- Bipolar preamp based on LTC6226

PH spectrum


E_d = 1.875 kV/cm

1 bar of 3 He and 1 bar of CF₄

 $V_{\mu RWELL}$ = 480 V

Primary Charge 2.26 fC

Gain ~10

Gain Measurements

400

600

800

Gain CF₄ + 1.00 bar + 1.50 bar E_d=1.875 kV/cm + 2.00 bar 2.50 bar ~280V/bar of CF₄ + 3.00 bar 10 3.50 bar - 4.00 bar 4.50 bar •--5.00 bar 5.78 bar •

1000

1200

1400

1600

1800

 μ RWELL with 1bar ³He and CF₄

Science and Technology Facilities Council

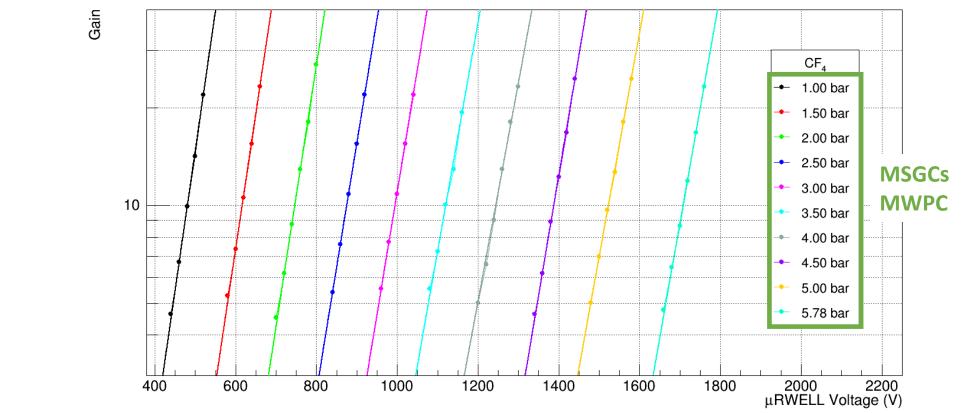
2000 2200 μRWELL Voltage (V)

Gain Measurements

 μ RWELL with 1bar ³He and CF₄

Gain CF_4 + 1.00 bar **GEMs** + 1.50 bar + 2.00 bar 2.50 bar + 3.00 bar 10 3.50 bar 4.00 bar - 4.50 bar •--5.00 bar 5.78 bar • 2000 2200 μRWELL Voltage (V) 400 600 800 1000 1200 1400 1600 1800

E_d=1.875 kV/cm

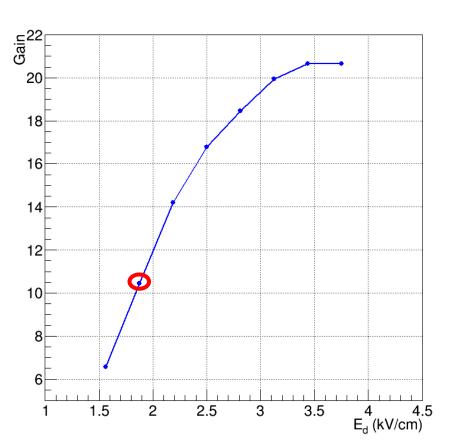

~280V/bar of CF_4

Gain Measurements

 μ RWELL with 1bar ³He and CF₄

E_d=1.875 kV/cm

~280V/bar of CF_4

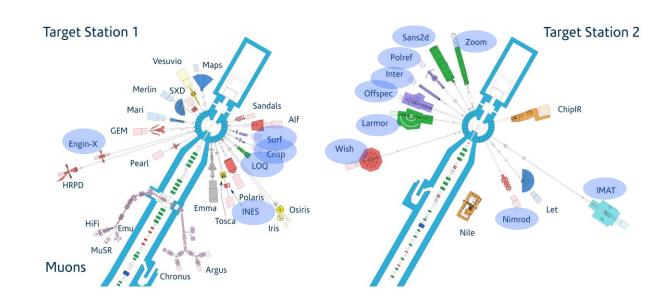


Scan in drift field

1bar 3 He +5.78bar of CF₄

 $V_{\mu RWELL}$ =1720 V

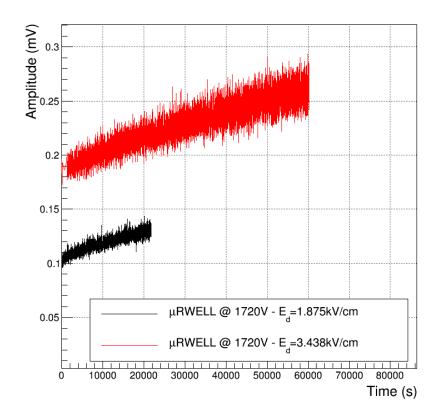
Primary charge collection increases by a factor two passing from 1.8 to 3.5 kV/cm



Results Summary

- We measured a gain between 20 and 40 with the μ RWELL operating in ³He and CF₄ up to 5.78 bar.
- Such gas mixture is a key component for a neutron detector with submillimetric position resolution (FWHM).
- MSGC GEM MWPC
- Potential application in neutron instruments:
 - SANS
 - Reflectometry
 - Imaging
 - 14/30 instruments at ISIS

Next steps (without neutron beam)


- Better understanding and control of charging up
- Gain increase up to a factor 40% in 17h: Neutrons from AmBe source Detected rate ~200Hz Gain ~20
- The charge up does not disappear after: Switching of the detector for up to 72h Inverting the polarity of the electrodes
- Next things to try:

Different connection to ground of the DLC layer Cylindrical holes in the Kapton rather than conical

• Ideas for the future:

Is Kapton's resistance too high?

Is there any other suitable material (with lower resistance) to build a $\mu RWELL?$

Next steps (with neutron beam)

- Beam available at ISIS in autumn At the end of Target Station 1 long shutdown
- Measure the rate capability Once we have the charging up under control
- Measure the position resolution
 Already designing µRWELL with X-Y readout
 Modifying the current vessel
 Exploring several electronics options for the readout

