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The Challenge

What if* the RIGHT BSM model has not been formulated?

*very likely
Would we still see the SM fail to describe data?

“Regular” Model-Independence:
weaken hypothesis on BSM nature, e.qg.

e Simplified Model (of, say, SUSY, or DM, or HVT, ...)

e Effective Field Theories
e Bump Hunt

“Machine-Learner” Model-Independence:
eliminate phenomenological modelling altogether

We must design Model Independent searches
aimed at detecting “generic” data departures from SM
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The Challenge

What if* the RIGHT BSM model has not been formulated?

*very likely

Would we still see the SM fail to describe data?

Most likely not !
BSM is tiny departure from SM, or large in tiny prob. region
Affecting few (unknown) observables over .o many we can measure

Regular New Physics searches are Model Dependent

Choose observables sensitive to one BSM model
This observable in general not sensitive to another BSM model

Conceptually, same problem as

assessing quality of a fit to data.
AKA, GoF Problem

SM = “Reference Model”, to be compared with data
without reference to alternative physics model




Maximum Likelihood

(Foundation of entire LHC statistical practice)
Data: D= {x;},i1=1,....Np

l.i.d. measurements of, e.g., reconstructed
particle momenta in a region of interest
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(Foundation of entire LHC statistical practice)

Data:. D= {x;},i1=1,...,Np

! n(x) = N P(x) A
N

. o = [dzn(x)
Alternative Distribution: n(x|w) L p

depending on parameters (composite)

Reference Distribution:  n(x|R)
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Maximum Likelihood

(Foundation of entire LHC statistical practice)

Data:. D= {x;},i1=1,...,Np

4 R
Reference Distribution:  n(z|R) n(z) = N P(z)

. L N = /dx n(x)
Alternative Distribution: n.(z|w) g y
depending on parameters (composite)

Test statistic: _N(w) Mo -
t(D) = 2Max { log | H

Model Dependent Strategy

n(x|w) = n(z|NP)

Alternative as predicted by “NP” model.
Few, or no, free parameters
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Maximum Likelihood

Data: D ={x;},1=1,...

7ND

Reference Distribution:  n(x|R)

Alternative Distribution: n.(z|w)
depending on parameters (composite)

Test statistic:
t(D) = 2 Max

log

Model Dependent Strategy

n(x|w) = n(z|NP)

Alternative as predicted by “NP” model.

Few, or no, free parameters

(Foundation of entire LHC statistical practice)

! n(x) = N P(x) A

N = [dxn(x)
\_ W,

o~ N(w) N

=y H

Model Independent Strategy
n(z|w) = n(z|R) e/ @W)

Alternative in parametrised form.
f(x;w) is flexible function approximant
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Maximum Likelihood

(Foundation of entire LHC statistical practice)

Data:. D= {x;},i1=1,...,Np

é )
T = NP
Reference Distribution:  n(z|R) n(z) ()

. o N = [dxn(x)
Alternative Distribution: n.(z|w) g y
depending on parameters (composite)

Test statistic: _N(w) Mo -
t(D) = 2Max { log | H
Model Dependent Strategy Model Independent Strategy
n(z|w) = n(x|NP) n(z|w) = n(z|R) e/ @&W)
Alternative as predicted by “NP” model. Alternative in parametrised form.
Few, or no, free parameters f(x;w) is flexible function approximant

If f(z; W) is piece-wise constant

<

Binned Histogram Test
(e.g., MUSIC at CMS)
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Maximum Likelihood

(Foundation of entire LHC statistical practice)

Data:. D= {x;},i1=1,...,Np

é )
T = NP
Reference Distribution:  n(z|R) n(z) ()

. o N = [dxn(x)
Alternative Distribution: n.(z|w) g y
depending on parameters (composite)

Test statistic: _N(w) Mo -
t(D) = 2Max { log | H
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Few, or no, free parameters f(x;w) is flexible function approximant

If f(=; W) is a neural network

A4

Our Proposal
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Maximum Likelihood

(Foundation of entire LHC statistical practice)

L Np

N
. . N P(x
Basic idea: f(x;w) = NN ()
replace histograms with NN, literally! dz n(z)
Y
Highly motivated attempt:
e NN “effective” flexible but smooth function approx.
e Often “sold” as alternative to hist. to fit distributions
¢ Better dimensionality scaling
Model Dependent Strategy Model Independent Strategy
n(z|w) = n(z|NP) n(z|w) = n(z|R) e/ W)
Alternative as predicted by “NP” model Alternative in parametrised form.

Few, or no, free parameters f(x;w) is flexible function approximant

If f(=; W) is a neural network

A4

Our Proposal
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Maximum Likelihood Loss

Turn the evaluation of “t” into supervised training problem:
n(z|w) = n(z|R) e/ @W)

[N AR ) | | Vo '
t(D) :2MV?X< log N H (i R) :—21\/[111 N(W)—N(R)—Zf(a:i;w

\ /

We need a Reference Sample, dlstrlbuted according to Reference Model
R:{QZ‘Z}, 1= 17;/\/72

Approximate integral as Monte Carlo sum:
N(R
N(w :/da:an ef (TW) — el (#W)
(W) («[R) e EERj
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Maximum Likelihood Loss

Turn the evaluation of “t” into supervised training problem:

t(D) = 2Max < log

\

o~ N(w) Np

v L

n(z|w) = n(z|R) e/ @W)

1))
n(x;|w) 1

) N
(iR ——2M1n N(W)—N(R)—;f(:vi;w_

/

We need a Reference Sample, dlstrlbuted according to Reference Model

R:{xz}, ZZl,,NR

Approximate integral as Monte Carlo sum:

. N
N(W):/dxn(x\R) ef (TiwW) — Z ACH

In order to read this as “equal”, we need

Nr > N(R)

Like saying that n(x | R) is “known”, as it

IS infinitely samplable 18




Maximum Likelihood Loss

Turn the evaluation of “t” into supervised training problem:
n(z|w) = n(z|R) e/ @W)

t(D) = 2Max < log

\

o~ N(w) Np

1))

n(x;|w)
v LG m

/

V
:—21\/[111 N(w)—

Np
—Zf(il?i;w
i=1 i

We need a Reference Sample, dlstrlbuted according to Reference Model
R:{QZ‘Z}, 1= 17;NR

Approximate integral as Monte Carlo sum:
N(R
N(w :/da?an ef (TW) — el (#W)
(W) («[R) e EERj

Get t = -2 * minimal loss. Trained net is fit to distribution log ratio

fow = —2Min L|f(-,wW)]

t(D) = —2Min
{w}

NR) §~ (orwm)
e 2
L= |- y%:)

(z,y)

xeD

(@) 1) yf(w)}

{w}
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The Algorithm

We compute “t” by supervised training using “ML-Loss”
eObserved (or Toy) Data are class “1”

eClass “0” is a Reference Sample

SM-distributed synthetic instances of the features “x”
Can come from Monte Carlo, or Data Driven

Nothing different from “background sample” in regular searches
Preferably, more abundant than the data: N'g > N (R)

20



The Algorithm

INPUT ; OUTPUT
Data sample D Dist. log ratio

! X AN ]
L e " datajreforence

X

éain D vs. R

fmme4§ﬁw

Reference sample R
ene pie X (z|R)

z f (a; W)
) — Test statistic ¢
g computed on the
2 data sample D
. ; : g t(D) = —2Min L[f]
00" 02 04 06 08 10 {w}

X
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The Algorithm

We compute “t” by supervised training using “ML-Loss”
eObserved (or Toy) Data are class “1”

eClass “0” is the Reference Sample

SM-distributed synthetic instances of the features “x”
Can come from Monte Carlo, or Data Driven

Nothing different from “background sample” in regular searches
Preferably, more abundant than the data: N'g > N (R)

We generate Toy Datasets in Reference Hypothesis, train

on each and compute empirical P(t|R)
This will give us the observed p-value:

pzlimm

O

|
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lllustrating Performances

(Simple 1d example with exponential Reference)

Distribution of the test statistic “t” in Reference Hypothesis

:()_1()'. """"""" 4'Ne'ur'onls ]
=== ===p P(tR) Peak in the Tail |
0.08} No cut
= 0.06} ) . .
ot | P(tINP;) | Notice agreement with
004 | | [\ %ddie o o o e o e e e e | __ "Asymptotic Formula”
| ! (more on this later)
R T 40 60 30
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lllustrating Performances

(Simple 1d example with exponential Reference)

Distribution of the test statistic “t” in Reference Hypothesis

L 0.10} 4 Neurons
=== ===p P(tR) Peak in the Tail |
0.08} No cut

S 0.06¢ ': Notice agreement with
S === = F k= o - = > PUNPY) | i Asvmoton :

1 0.04f irdphm = === === m e 1 _ _ - Asymptotic Formula

0 I + I (more on this later)

| i |

, 0005 20 20 60 30

Distribution of “t” in one New Physics Model Hypothesis
t > p = Z-score weuse Z = d7 (1 - p))
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n(x)

Quantifying Performances

104,

1000}

' B=2000
10l S=10

NP,: Peak in the Tail-

Reference

0.0

0.2

0.4

0.6

0.8

10

"

(Simple 1d example with exponential Reference)

[Peakin e Tal, 4 Nourans, No ot |
4 i
3 E.'M'eg'lgp"l\lhl'"'"'"'""""'.".".':'-'.Ef':v:':i";':::i:f'-i':' """"
1
Of .
-1} Median Ideal
o 1 2 3 4 5 6

“ldeal Z-score”: Z;

A “measure of dataset discrepancy”
(the Z-score of optimal test for NP1 model)
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n(x)

Quantifying Performances

104,

1000}

100}

10}

NPs: Excess in the Tail |

"

Reference

0.0

0.2

04

0.6

0.8 10

(Simple 1d example with exponential Reference)

T
Excess in the Tail, 4 Neurons ]
5iNo cut !

Medlan NN T "r o3 . :

3 .--__________________________..__:._.'_.u.-..ﬂ.u "?.'. Sy S

| U 'R 1
2 . ." e 4
1 E- .o‘$ o i
of i
—1 Median Ideal !

o 1 2 3 4 5 6

“ldeal Z-score”: Zig

A “measure of dataset discrepancy”
(the Z-score of optimal test for NP2 model)
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n(x)

Quantifying Performances

(Simple 1d example with exponential Reference)

T —
 Peak in the Bulk, 4 Neurons i
'No cut i
S — 4 L
10*} NP3: Peak in the Bulk - . :t.: - e
Reference  Median NN C ’_"*':,:g';: :‘::"' o
e | o T ST AR _
N RO L
100} | . . :-..“' . i .
O B . * .o ® ° i.
10} f ' Coe e . !
1
0.0 02 0.4 0.6 0.8 1.0 ) [ i
. Median Ideal |
0 1 2 3 4 5 6

“ldeal Z-score”: Zgq

A “measure of dataset discrepancy”
(the Z-score of optimal test for NP3 model)
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Quantifying Performances

(Simple 1d example with exponential Reference)

 Peak in the Bulk, 4 Neurons
' No cut

NP3: Peak in the Bulk

[ Median NN

Correlation between how much tension we see, and

how much there is to see. Weakly depend on NP nature

“ldeal Z-score”: Z;

A “measure of dataset discrepancy”
(the Z-score of optimal test for NP3 model)
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An Imperfect Machine

Reference Model Predictions are unavoidably imperfect
e.g., PDF/Lumi/Detector Modeling ...

Imperfections are Nuisance Parameters

Constrained by Auxiliary Measurements
Define a composite Reference hypothesis
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An Imperfect Machine

Reference Model Predictions are unavoidably imperfect
e.g., PDF/Lumi/Detector Modeling ...
Imperfections are Nuisance Parameters

e e e e Constrained by Auxiliary Measurements
N Define a composite Reference hypothesis

max [£(Hw o |D) - L(v|A)]

HD, A) =3 log V;l;x LR |D) - LI A)

Just like in no-nuisance case:
n(z|Hy ) = e/ @ n(z|R,)

Beyond-Reference effects
parametrised by NN




An Imperfect Machine

Reference Model Predictions are unavoidably imperfect
e.g., PDF/Lumi/Detector Modeling ...

Imperfections are Nuisance Parameters

Constrained by Auxiliary Measurements
Define a composite Reference hypothesis

L(Hw,|D) E(V\A)} {E(Ru!D) L(v|A)

L(Ro|D)  L(0]A) L(Ro|D) L(0|A)

t(D, A) = 2 maxlog { — 2 max log

v

¥

t(D,A) =7(D,A) — A(D, A)

i
Central-Value Reference: R()
Nuisance set to their C-V 31



An Imperfect Machine

“Delta” term by direct likelihood maximisation
After learning the effect of nuisance locally on distribution

Zgi ?{3 = exp —V(Sl( ) + ;V do(x) + ...

Adaptation of likelihood-free inference techniques
Would require dedicated seminar. [See e.g. 1907.10621, 2007.103586, ...]

Just be aware that:
) learning requires (enough) R data with non-C-V nuisance
i) the quality of the reconstruction can play crucial role

r(r;v) =

t(D,A) =7(D,A) |{A(D, A)

Central-Value Reference: R()
Nuisance set to their C-V 35



An Imperfect Machine

“Tau” term by training on Data
Almost like for no nuisance, but with modified ML-Loss:

L|f(sw), v 5(.)]:_2[/3(:@, w) + log(r(zi; v +Zwe[ (wesw)+Hog(r(zeiw)) _ ]

x; €D ecE’R
L(v|A)
L(0]A)

+ log [

And, with simultaneous training over the nuisance parameters
Data trained against Central-Value Reference sample only

t(D,A) ={\7(D, A)

_A(D, A)

Central-Value Reference: R()
Nuisance set to their C-V 13



An Imperfect Machine

Reference Model Predictions are unavoidably imperfect
e.g., PDF/Lumi/Detector Modeling ...

Imperfections are Nuisance Parameters

Constrained by Auxiliary Measurements
Define a composite Reference hypothesis

L(Hw,|D) E(V\A)} {E(RVID) L(v|A)

L(Ro|D)  L(0]A) L(Ro|D) L(0A)

— 2 max log

t(Dv A) — T(D7 A) o A(Da A)
If we do all right, by Wilks-Wald we get:

P(t|Ry) = P(t|Ro) = X3

t(D, A) = 2 maxlog {

i
Central-Value Reference: R()
Nuisance set to their C-V 24



An Imperfect Machine

Reference Model Predictions are unavoidably imperfect
e.g., PDF/Lumi/Detector Modeling ...

Imperfections are Nuisance Parameters
Constrained by Auxiliary Measurements
Define a composite Reference hypothesis

L(Hw,|D) E(V\A)} {E(RVID) L(v|A)

L(Ro|D)  L(0]A) L(Ro|D) L(0A)

t(D, A) = 2 maxlog { — 2 max log

v

t(Dv A) — T(D7 A) o A(Da A)

If we do all right, by Wilks-Wald we get:
P(t|Ry) = P(t|Ro) = X
Independence of t distribution on the true

value of nuisance is essential for feasible
test

|
Central-Value Reference: R()
Nuisance set to their C-V




An Imperfect Machine at Work

(Simple 1d example with exponential Reference)

Tau distribution distorted by non-central value nuisance
If not corrected, produces false positives

t = Tau-Delta independent of nuisance

0-10) NN CORRECTION

—C g
35
35

|
-
+
[u—Y

=9 O'SZO ].5 ON — 0.15
0.08} 4 | RE 0—2 ;II: 0,0 ,
2 {
Xiz J /o b4 |
— 0.06| T ' The- boe ¢ “ M

[

0.02| _+_

)

)

=)
U1,||
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Remarks/Concerns

Remark #1: By Wilks-Wald Theorem, P(t|F

) is a X2, with

as many d.o.f. as fit parameters (for us, number of NN pars)...
Provided statistics is large relative to “complexity” of

model being fitted
or, which 1s the same

Provided fit model “simple enough”, for given data stat.

N4

We use x2-compatibility as Model Selection criterion
Asy.For. violation = sensitivity to low-statistics portion of dataset = overfitting

Selection w/o nuisance ensures nuisance-independent chi-sq

Criterion used in particular to select Weight Clipping reg

ularisation par.

37



Weight Clipping Selection

(Simple 1d example with exponential Reference)

0.09 ’
Weight clipping: 9 wem  Tarqget v2
— — x}; percentiles 0.08 get xis
0.07
.y | S °
95 % 0.06
; ~= 0.05
16.0] = e o e 75% | =
& 0.04
12.3} -4- 50 %
0.03
9.3} - 25 %
0.02
5.9 - 5 %
0.01
0.00
50k 100k 150k 200k 250k 300k 0 10 20 30 40 50
Training epochs t
Weight clipping: 1 Weight clipping: 4 Weight clipping: 50 Weight clipping: 100
224 ---mmmmmm e 95 %
t
16.0f-----=-------------- 75 %
123 - mmm e 50 %
9.3}- 25 %
5.0 5 %
0 100k 200k 300k 0 100k 200k 300k 0 100k 200k 300k 0 100k 200k 300k
Training epochs Training epochs Training epochs Training epochs
0.18
0.16 Weight clipping: 1 Weight clipping: 4 Weight clipping: 50 Weight clipping: 100
0.14
0.12
f" 0.10
= 0.08
0.06 +
0.04}
0.02}
0.00-
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30

Asy.For. violation by fit Asy.For. violation by sensitivity

parameters boundary to sparse data points
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Remarks/Concerns

Remark #1: By Wilks-Wald Theorem, P(t|R) is a x2, with
as many d.o.f. as fit parameters (for us, number of NN pars)...
Provided statistics is large relative to “complexity” of

model being fitted

or, which 1s the same
Provided fit model “simple enough”, for given data stat.

N4

We use x2-compatibility as Model Selection criterion
Asy.For. violation = sensitivity to low-statistics portion of dataset = overfitting

Selection w/o nuisance ensures nuisance-independent chi-sq
Criterion used in particular to select Weight Clipping regularisation par.

Concern #1: We do not like Weight Clipping, and we
would like better regularization and measure of NN complexity

39



Remarks/Concerns

Remark #2:

The Reference Sample is not of course infinite.

We do empirically check that results weakly depend on the
specific Reference sample instance.

Factor few more abundant than Data found enough
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Remarks/Concerns

Remark #2:

The Reference Sample is not of course infinite.

We do empirically check that results weakly depend on the
specific Reference sample instance.

Factor few more abundant than Data found enough

Concern #2:

We have no Analytic/Asymptotic control of the Reference
Sample fluctuations effects.
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Remarks/Concerns

Remark #3:

Ours is a GoF 2-sample test from classifier training.
[see J.Friedman, 2004]

With specific test statistics and loss function choice, dictated
by Maximum Likelihood approach.

Maximum Likelihood convenient viewpoint to deal with
imperfections as nuisance parameters.

42
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Remarks/Concerns

Remark #3:
Ours is a GoF 2-sample test from classifier training.
[see J.Friedman, 2004]

With specific test statistics and loss function choice, dictated
by Maximum Likelihood approach.

Maximum Likelihood convenient viewpoint to deal with
imperfections as nuisance parameters.

Concern #3:

No concern here.
But we should look for concrete GoF problems to try NPLM
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Outlook

Strategy has been defined, and applied to problems of the
same scale of complexity as LHC analysis

Further progress requires full-fledged implementation in
realistic LHC final state (2 leptons?, 4 leptons?, more exotic?)
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Outlook

Strategy has been defined, and applied to problems of the
same scale of complexity as LHC analysis

Further progress requires full-fledged implementation in
realistic LHC final state (2 leptons?, 4 leptons?, more exotic?)

Expected implementation challenges (limit on lumi. we can handle)

e Statistically accurate enough (large or smart) Reference Sample
® (Generation of Reference-distributed Toys

® Accurate learning of nuisance Likelihood

® [raining execution time
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Outlook

Strategy has been defined, and applied to problems of the
same scale of complexity as LHC analysis

Further progress requires full-fledged implementation in
realistic LHC final state (2 leptons?, 4 leptons?, more exotic?)

Expected implementation challenges (limit on lumi. we can handle)

» Statistically accurate enough (large or smart) Reference Sample
> Generation of Reference-distributed Toys

> Accurate learning of nuisance Likelihood

® [raining execution time

Faster/Smarter Monte Carlo
weighted samples

generative models
fast (but accurate) detector sim.
Toys at NLO

Generic need for the whole
HL-LHC analysis program!
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Outlook

Strategy has been defined, and applied to problems of the
same scale of complexity as LHC analysis

Further progress requires full-fledged implementation in
realistic LHC final state (2 leptons?, 4 leptons?, more exotic?)

Expected implementation challenges (limit on lumi. we can handle)

» Statistically accurate enough (large or smart) Reference Sample
> Generation of Reference-distributed Toys

> Accurate learning of nuisance Likelihood

® [raining execution time

Faster/Smarter Monte Carlo

weighted samples Likelihood-free Inference
generative models Techniques

fast (but accurate) detector sim. being worked out for EFT (MadMiner)
Toys at NLO

Stimulate and exploit these

Generic need for the whole developments

HL-LHC analysis program!
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Outlook

Strategy has been defined, and applied to problems of the
same scale of complexity as LHC analysis

Further progress requires full-fledged implementation in
realistic LHC final state (2 leptons?, 4 leptons?, more exotic?)

Expected implementation challenges (limit on lumi. we can handle)

» Statistically accurate enough (large or smart) Referance Samnle

> Generation of Reference-distributed Toys Non-NN Models

~ : : : : Kernel Method “Falkon”
Acc.:u.rate Iearnlpg of nuisance Likelihood Letizia, Grosso. et. al., 2022]

® [raining execution time

Faster/Smarter Monte Carlo

weighted samples Likelihood-free Inference
generative models Techniques

fast (but accurate) detector sim. being worked out for EFT (MadMiner)
Toys at NLO

Stimulate and exploit these

Generic need for the whole developments

HL-LHC analysis program!
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Outlook

Model-Independent search algorithms also good for:

- Comparison between Monte Carlo Generators
- Data Validation
- GoF
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Outlook

Model-Independent search algorithms also good for:

- Comparison between Monte Carlo Generators
- Data Validation
- GoF

When and if these technigues make it to real analyses,
| suspect we will find plenty of wrong bck estimates ...
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Outlook

Model-Independent search algorithms also good for:

- Comparison between Monte Carlo Generators
- Data Validation
- GoF

When and if these technigues make it to real analyses,
| suspect we will find plenty of wrong bck estimates ...

But maybe we will find New Physics as well !l
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Outlook

Model-Independent search algorithms also good for:

- Comparison between Monte Carlo Generators
- Data Validation
- GoF

When and if these technigues make it to real analyses,
| suspect we will find plenty of wrong bck estimates ...

But maybe we will find New Physics as well !l

Thank You
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