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The Problem (as I Understand It)

We observe
Y1, . . . ,Yn ∼ p

where
p = (1− λ) b(y)︸︷︷︸

background

+λ s(y)︸︷︷︸
signal

.

We want to test
H0 : λ = 0

or, equivalently,
H0 : p = b.

And we have many flavors such as ...
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Flavors

Background:

• given: goodness-of-fit

• model: goodness-of-fit with nuisance parameters

• sampled: two-sample

When a signal model is given, this becomes model dependent
search.

My goal: pointers to the statistics literature that might be useful.
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Assumed Background b(y)

If the background density b(y) is assumed, this is a goodness of fit
test:

Y1, . . . ,Yn ∼ p

H0 : p = b versus H1 : p ̸= b.

This is the classic goodness-of-fit problem but it is multivariate.
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Goodness-of-fit: Optimality

Is there an optimal test?

Yes and No.

Yes. (Ingster and Suslina 2003, Arias-Castro and Pelletier 2018,
Balakrishnan and Wasserman 2019).

H0 : p = b versus H1 : d(p, b) ≥ ϵ
p ∈ P (nonparametric class: Sobolev space or Besov space) and
some distance d .

There exists a minimax test ϕ∗ maximizes minimum power. That
is, it achieves

sup
ϕ

inf
d(p,b)≥ϵ

P(ϕ = reject)

It’s optimal but the power is not high.
Generally, the likelihood ratio test is not special!
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Goodness-of-fit: Optimality

Is there an optimal test?

No. Janssen (2000) showed that any omnibus test only has
substantial power in finitely many directions.

Cannot distinguish close alternatives at a distance of n−1/2.

Nevertheless, there are some multivariate tests that you might not
know which might be useful which we now review.
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Level Set Test (Polonik 1999)

Let
Γt = {y : b(y) ≥ t}

be the upper level set. This is a one-dimensional family of subsets.
(VC dimension 1).
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Level Set Test (Polonik 1999)

Then: P = B iff P(Γt) = B(Γt) for all t.

Let
Tn = sup

t
|Pn(Γt)− B(Γt)|

where

Pn(Γt) =
1

n

∑
i

I (Yi ∈ Γt)

B(Γt) =

∫
Γt

b(y)dy

Then √
nTn ⇝ sup

t
|G(t)|

where G is a Gaussian process. This is distribution free. Like a KS
test.
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Bickel-Breiman Nearest Neighbor Test

Let
Wi = e−nb(Yi )Vi

where Vi is the volume of the ball containing the nearest neighbor.

Let

Fn(t) =
1

n

∑
i

I (Wi ≤ t)

and

S =

∫
F 2
n (t)dt

which has a known limiting distribution. See Schilling (1983).
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Neyman Smooth Test

This test targets certain directions by specifiying basis functions
ϕ1, ϕ2, . . ..

Model p(y) as
p(y) = b(y)e

∑
j θjϕj (y)−Z .

Easy to estimate the θj ’s and then test θ = 0.

See Algeri (2020, 2021).
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With a Given Signal (Model Dependent)

For a given signal s, the LRT is

T = sup
λ

∏
i

(
1− λ+ λ

s(Yi )

b(Yi )

)

A possibly better test is the score test:

T =
1

n

∑
i

s(Yi )

b(Yi )
− 1

which does not require estimating λ
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With a Signal Model

This is a parametric family:

p(y) = (1− λ)b(y) + λsθ(y)

(or perhaps for a one-dimensional marginal such as mass).

λ and θ can be estimated by maximum likelihood using the EM
algorithm.

Testing λ is tricky because of the boundary and because θ is not
identified under H0. LRT has nonstandard limiting behavior.

Max score:

Tn = sup
θ

1

n

∑
i

sθ(Yi )

b(Yi )
− 1

and the null distribution can be obtained by simulation.
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Bump Test

Target the bumps in a one dimensional marginal M = f (Y ).

Test:
H0 : p(m) = b(m) for all m versus H1 : p(m) > b(m) for some m.

Don’t use histograms! Use the local polynomial density estimator
p̂ (Cattaneo, Jansson and Ma 2020).

F (m) = P(M ≤ m).

For u near m:

F (u) ≈ F (m) + (u −m)p(m) +
(u −m)2

2
p′(m)

= β0(m) + (u −m)β1(m) + (u −m)2β2(m)
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Bump Test

Let

Fn(m) =
1

n

∑
i

I (Mi ≤ m)

Let β̂(m) minimize:

min
b

∑
i

(F̂n(m)− rTb)2 K

(
Mi −m

h(m)

)
where r = (1,Mi −m, (Mi −m)2), K is a kernel,
h(m) = (C (m)/n)1/5 and C (m) is known.

Let
p̂(m) = β̂1(m).

This is optimal (under mild conditions) and boundary adaptive.

Use
T = sup

m
[p̂(m)− b(m)].
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Robustness to Background Misspecification

There is a growing literature on robust tests:

H0 : Y1, . . . ,Yn ∼ q, q ∈ Nϵ(b)

where Nϵ(b) is a neighborhood of b.

Examples: Wasserstein neighborhood (Xie, Gao and Xie 2021)
RKHS neighborhood (Sun and Zou 2022), Huber neighborhood
(Huber 1965).

Tradeoff between robustness and power.
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With Simulated Background: Two Sample Test

X1, . . . ,Xm ∼ b

Y1, . . . ,Yn ∼ p = (1− λ)b + λs

Two sample test:

H0 : p = b versus p ̸= b

Again there are many tests. There is no optimal test.
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RKHS, MMD, Energy

Let
ψ = sup

f ∈F

∣∣∣EB [f (X )]− EP [f (Y )]
∣∣∣

where F is a reproducing kernel Hilbert space (RKHS).

Tn =
1

n(n − 1)

∑
i ̸=j

Hij

where

Hij = K (Xi ,Xj) + K (Yi ,Yj)− K (Xi ,Yj)− K (Xj ,Yi ).

Null distribution is complicated.
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Classifier Tests

S 1 1 · · · 1 0 0 · · · 0

Z Y1 Y2 · · · Ym X1 X2 · · · Xn

h(z) = P(S = 1|Z = z)

=
p(z |S = 1)P(S = 1)

p(z |S = 1)P(S = 1) + p(z |S = 0)P(S = 0)

=
p(z |S = 1)π

p(z |S = 1)π + p(z |S = 0)(1− π)

where π = m/(m + n). Hence

p(y)

b(y)
=

h(z)

1− h(z)

so we have estimated the density ratio.
Chakravarti, Kuusela, Lei and Wasserman 2022
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Classifier Tests

Which classifier?

Current fashion: neural nets (deep learning)

Others:
random forests, logistic regression, ...

Aside: why did everyone start calling classification and regression
Machine Learning? It’s statistics! We’ve been doing it for 100
years!
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Classifier Tests
Which test?

∏
i

ĥ(Zi )

1− ĥ(Zi )

is an estimate of the Neyman-Pearson test.

Really, the classifier is just a dimension reduction method. We have

ĥ(X1), . . . , ĥ(XN)

and
ĥ(Y1), . . . , ĥ(Yn)

The data are now one-dimensional. We can use any
one-dimensional two-sample test we want.

For example:
classifier accuracy, density ratio (Neyman-Pearson), KS test, etc.
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Error Control

Constructing the classifier and doing the test on the same data can
lead to invalid p-value.

Two fixes: permuations and data splitting

Permutation: permute the labels, repeat the classifier K times, and
the p-value is

1

K

∑
j

I (Tj > t)

is a valid p-value. But this is expensive.

Or: split the sample. Construct the classifier on first half. Conduct
the test on the second half.
See Chakravarti, Kuusela, Lei and Wasserman (2022).

21 / 24



Error Control

Constructing the classifier and doing the test on the same data can
lead to invalid p-value.

Two fixes: permuations and data splitting

Permutation: permute the labels, repeat the classifier K times, and
the p-value is

1

K

∑
j

I (Tj > t)

is a valid p-value. But this is expensive.

Or: split the sample. Construct the classifier on first half. Conduct
the test on the second half.
See Chakravarti, Kuusela, Lei and Wasserman (2022).

21 / 24



Error Control

Constructing the classifier and doing the test on the same data can
lead to invalid p-value.

Two fixes: permuations and data splitting

Permutation: permute the labels, repeat the classifier K times, and
the p-value is

1

K

∑
j

I (Tj > t)

is a valid p-value. But this is expensive.

Or: split the sample. Construct the classifier on first half. Conduct
the test on the second half.
See Chakravarti, Kuusela, Lei and Wasserman (2022).

21 / 24



Error Control

Constructing the classifier and doing the test on the same data can
lead to invalid p-value.

Two fixes: permuations and data splitting

Permutation: permute the labels, repeat the classifier K times, and
the p-value is

1

K

∑
j

I (Tj > t)

is a valid p-value. But this is expensive.

Or: split the sample. Construct the classifier on first half. Conduct
the test on the second half.
See Chakravarti, Kuusela, Lei and Wasserman (2022).

21 / 24



Classifier Tests

Are classifier tests better than other tests?

No one knows.

The theoretical properties of black box classifiers (random forests,
neural nets) are not understood.

Don’t assume that neural nets are optimal.
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Conclusion

Because there is no optimal test, we need to choose a test carefully.

Classifier tests seem very promising.

We have virtually no theory for these tests. (Some limited results
in Kim, Ramdas, Singh and Wasserman 2021).

THE END
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Error Control: Universal Inference

Exact inference, no regularity conditions. (Wasserman, Ramdas,
Balakrishnan 2020).

Split data: D0 and D1.

Compute λ̂ from D1 and likelihood L0 from D0.

Let

U =
L0(λ̂)

L(0)
.

Repeat B times and let U = B−1
∑

j Uj .

Reject of U > 1/α.
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