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Overview

• The goal of this talk is to discuss some of the practical challenges, limitations and 
assumptions when doing anomaly detection with actual LHC data. 

2ATLAS Collaboration, Phys.Rev.Lett. 125 (2020) 13, 131801

• I will consider the dijet resonance search 
via weak supervision by ATLAS to highlight 
these challenges.


• See talks by Ben, Gregor and Sasha for a 
wider coverage of anomaly detection 
methodology.

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.131801
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Outline

• Learning from data

• Classification without labels (CWoLa)

• ATLAS dijet search: 


• Bump-hunting with CWoLa

• Challenges and methodologies

• Final remarks
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Most plots from:

ATLAS paper

A. Cukierman’s EP-IT Data science seminar 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2018-59/
https://indico.cern.ch/event/853615/
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Why learn directly from data*?

4

1. Avoid imperfect simulations of physics processes and particle interactions.

• Minimising background-model dependence, which leads to sub-optimal 

performance of trained algorithms on data.

2. In searches for new physics, avoid tuning analyses to specific final states or 

beyond-the-Standard-Model scenarios.

• Therefore minimising biases or blind-spots in our physics coverage.


• One obvious drawback: there are no background and signal labels in data.

• This is where unsupervised or weakly-supervised learning methods enter.

* With minimal use of simulation.



Classification without labels

(CWoLa)

Metodiev, E.M., Nachman, B. & Thaler, J. High Energ. Phys. 2017, 174 (2017)
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CWoLa: Classification Without Labels (I)

• Weak supervision: noisy labels.


• Start with two mixed samples which 
contain both signal and background.


• No knowledge of signal and background 
labels nor of their fractions in each 
sample is needed.


• Train a (supervised) classifier to 
distinguish between samples 1 and 2.

6
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CWoLa: Classification Without Labels (II)
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• For f2≪1:

p1(x)
p2(x)

=
f1pS + (1 − f1)pB

f2 pS + (1 − f2)pB
=

f1
pS

pB
+ (1 − f1)

f2
pS

pB
+ (1 − f2)

f1: signal fraction in sample 1

f2: signal fraction in sample 2

p1(x)
p2(x)

= (1 − f1) + f1
pS

pB

p(sample 1 |x)
p(sample 2 |x)

=
f1pS + (1 − f1)pB

f2 pS + (1 − f2)pB
=

f1LS/B + (1 − f1)
f2LS/B + (1 − f2)

Reference: background 
dominated sample

Signal enriched sample
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CWoLa: Classification Without Labels (III)
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• Assumes no (large) differences 
between B and S events in 
samples 1 and 2.


• Does not require any knowledge of 
f1 and f2 for training.


• Requires fractions f1 and f2 to be 
sufficiently different.
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Auxiliary variables for machine learning

(Can be low or high-dimensionality)

• Classifier trained on feature(s) Y that can increase 
signal purity.

• No assumptions on Y other than ~same distribution 

for background events in the two mixed samples.

• Confirmed via simulation, theory or control regions.


• In the presence of signal, classifier learns 
systematic correlations between the two mixed 
samples and Y.


• In the presence of background-only, classifier 
should select randomly.

9

CWoLa: Classification Without Labels (IV)



ATLAS dijet search

ATLAS Collaboration, Phys.Rev.Lett. 125 (2020) 13, 131801
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Bump-hunting with CWoLa (I)
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A
B C

• Signal well-localised in 1 dimension: mass of the dijet system, mA. ✓

• Features to provide S vs B discrimination: jet masses mB and mC. ✓

• Two classes: multijet and signal.

SB SR SBDijet Mass (mA)

# 
ev

en
ts

Signal 
region 
(SR)

Sideband

(SB)

Sideband

(SB)

?
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Bump-hunting with CWoLa (II)
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A
B C

Two main steps:


1. Sensitivity to signal: Train a NN to 

distinguish between SR and SBs and 

use it to build a signal-enriched region. 


2. Statistical analysis: Fit mA distribution 

under the background-only hypothesis. 


➡ Repeat for different definitions of SR and 

SB: scan of mA.Dijet Mass (mA)

# 
ev

en
ts

SB SR SB

Pre-NN selection

Post-NN selection

ε=1
ε<1
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• Dijet mass split into 6 signal regions:

• Bump-hunt range 2.28-6.81 TeV (fit range: 1.8-8.2 TeV)

• Window size of 20% mA (driven by detector resolution for narrow resonances).

13

Bump-hunting with CWoLa (III) A
B C

• The efficiency of the NN cut is not 
optimised, but two fixed signal selections 
are used:

• ε = 0.01, 0.1

/ mA



Inês Ochoa, May 25th, 2022 14

NN output training directly on data NN output with injected signal at x

Bump-hunting with CWoLa (IV)



Challenges and methodologies

ATLAS Collaboration, Phys.Rev.Lett. 125 (2020) 13, 131801

Collins, J. et al, Phys.Rev.D 99 (2019) 1, 014038
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Look elsewhere effect (I)

• Trials factors: for a “classic” 3D scan in mA, mB, mC, the trials factor could be very large.

• Large LEE from scanning over feature space: addressed as described in the next slide.

• LEE for scan in mA not avoided.


• Regions are defined ahead of time and are non-overlapping.

16

• An additional (smaller) factor could come 
from scanning different thresholds in the 
NN efficiency ε.


• Here, two regions with efficiency 
thresholds (10%, 1%) are sufficiently 
distant to be considered independent.

/ mA
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Look elsewhere effect (II)

• In order to remove a large LEE from the scan in mB, mC, avoid training and 
evaluating in the same data.

• Split into train and test set such that no event is selected with a NN it was trained with.

• Applying a cut on the NN output is equivalent to selecting the most signal-like 2D bins.


• In the ATLAS dijet analysis, this is addressed with k-fold cross-validation method:

17

Train Validate Apply
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Look elsewhere effect (III)

• If only background is present, any statistical fluctuation 
in the train dataset is uncorrelated from those in test.


• If a real signal exists, an excess in the train dataset 
should also be present in the test dataset.


• Training + ensembling multiple classifiers helps 
mitigate impact of overfitting on statistical fluctuations.

18

Train Validate Apply 5 x 4 x 3 (random state 
initialisations) = 60 NNs

4 independent training 
runs on same data:
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Choice of features: decorrelation

• Method relies on there being no significant differences between background in 
sidebands and background in the signal region.

• No fake bumps: if no signal, mA spectrum should remain smooth after tagging.

• Features need to vary slowly with mA: true for mB and mC.

19

• Any correlations are further reduced by:

• Scaling of 1D mJ = {mB, mC} distribution in 

sidebands to the signal region.

• Restricting mB, mC ranges to 30-500 GeV.

• Combining sidebands and assigning same total 

weight to each.



Inês Ochoa, May 25th, 2022

Training statistics and S/B

• Difficulty set by relative size of S in the mixed samples 
and total number of events available for training.

• Weakly-supervised NN more powerful when local S/B is high.

• Performance of unsupervised approaches independent of S/B.


• Trivial: limited B statistics impact training performance.


• Choice of SR vs location of the peak:

• In ATLAS search, signal efficiency unaffected by shifted peak 

location in most of the mass range.

20
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Fitting procedure (I)

• Fit mA spectrum with a parametric function for evaluating B-only hypothesis.

• Model-independent results: p-value in mA for each signal region and ε cut. 


• Iterative procedure until χ2 p > 0.05 in sidebands only:


1. 


2. 


3. 

4. Sidebands reduced by 400 GeV on both sides, repeat.


• Future challenge: fit with more data or higher ε cuts.

• Will require non-parametric approaches.

dn /dx = p1(1 − x)p2−ξ1p3x−p3

dn /dx = p1(1 − x)p2−ξ1p3x−p3+(p4−ξ2 p3−ξ3p2)log(x)

dn /dx = p1xp2−ξ3e−p3x+(p4−ξ2 p3−ξ3p2)x2

21

Dijet Mass (mA)

# 
ev

en
ts

SR

masked region

Fit range: 1.8-8.2 TeV

ATLAS Collaboration, Phys.Rev.Lett. 125 (2020) 13, 131801

UA2 Collaboration, Z.Phys.C 49 (1991) 17-28

ATLAS Collaboration, JHEP 09 (2019) 091

https://arxiv.org/pdf/1910.08447.pdf
https://link.springer.com/article/10.1007/BF01570793
https://arxiv.org/abs/1906.08589
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Fitting procedure (II)

• Fit mA spectrum with a parametric function for evaluating B-only hypothesis.

• Model-independent results: p-value in mA for each signal region and ε cut. 


• Iterative procedure until χ2 p > 0.05 in sidebands only:


1. 


2. 


3. 

4. Sidebands reduced by 400 GeV on both sides, repeat.


• Future challenge: fit with more data or higher ε cuts.

• Will require non-parametric approaches.

dn /dx = p1(1 − x)p2−ξ1p3x−p3

dn /dx = p1(1 − x)p2−ξ1p3x−p3+(p4−ξ2 p3−ξ3p2)log(x)

dn /dx = p1xp2−ξ3e−p3x+(p4−ξ2 p3−ξ3p2)x2
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Largest positive deviation around 2500 GeV

ATLAS Collaboration, Phys.Rev.Lett. 125 (2020) 13, 131801

UA2 Collaboration, Z.Phys.C 49 (1991) 17-28

ATLAS Collaboration, JHEP 09 (2019) 091

https://arxiv.org/pdf/1910.08447.pdf
https://link.springer.com/article/10.1007/BF01570793
https://arxiv.org/abs/1906.08589
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Setting limits (I)

23

1. Perform coarse scan over injected signal strengths µ.

2. For a given µ, limit is max(σCL,σinjected):


• The NN’s performance may not be as good if there 
was less signal than injected.


3. For a given signal, limit is minµ(max(σCL(µ),σinjected(µ)))

For one signal region, 10 injected μ x 5 random samplings of the signal simulation ≃ 3000 NNs  

• The classifier’s performance depends on the data it sees:

• Limit depends on the injected signal strength.

• The learning procedure must be repeated for a new signal and a new cross-section.



Inês Ochoa, May 25th, 2022

Setting limits (II)

24

mA = 3000 GeV mA = 5000 GeV
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Validation

• Lack of good control regions to validate method and assumptions:

• Whatever the NN learns and we select on depends on the data.


• This search relies on:

• Simulation.

• Validation region in data, using events with large absolute rapidity difference 

between the jets.

• Where S/B ratio is expected to be much lower (true for s-channel resonances).


• More generally, some anomaly detection methods may be suitable to be validated with 
SM processes.

25
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Computing resources

• Resource intensive: for this result, O(10k) neural networks were trained.


• Additional resources if:

• Finer grid of signal strength injections for limit setting.

• More complex scans of mA or of NN efficiency thresholds.

• Performing further re-interpretation of results in absence of an excess: 


• RECASTing requires access to data for retraining with injected signals.

26



Final remarks
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Final remarks
• We always need minimal assumptions regarding what new physics is.

• For this method, the key physics starting points are:


• New physics is a (narrow) resonance:

• Localized over-density / bump in a given dimension.


• The background process is smooth in this dimension.

• Allows us to define signal-enriched and signal-depleted regions.


• Uncovered here:

• Methods that don’t rely on decorrelation between features and mA (e.g. SALAD, CATHODE, …)

• Methods using simulation for background model.

• Non-resonant physics or wide resonances.


• Anomaly detection at the LHC will require a combination of methods to fully exploit 
the data.

28

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.095004
https://arxiv.org/abs/2109.00546


Backup
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A. Cukierman’s EP-IT Data science seminar 

https://indico.cern.ch/event/853615/
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A. Cukierman’s EP-IT Data science seminar 

https://indico.cern.ch/event/853615/

