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Overview

e At this point in the workshop, do not need to motivate searching for
anomalies

e |ntroduce LHC Olympics: Ideas behind, setup, methods, and results

e Some other comments on open issues for anomaly detection

(With many thanks to Ben & David as LHCO co-organizers and all participants!!)



Types of anomalies

Outliers/Point anomalies: Datapoints far away from regular
distribution

Examples:
e Detector malfunctions

 Background-free search

Group anomlies: Individual examples not interesting,
but signal is an overdensity with respect to background

Examples:
* Resonance searches
e Transient signals in time series

Focus of LHC Olympics
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Approaches

Use simulation to estimate backgrounds?

Systematically compare simulation and
recorded data, look for differences

Con: Relies on imperfect simulation,
Maximally background model dependent
Pro: Sensitive to all types of anomalies

e.g. MUSIC
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Estimate background from data
Con: Need to make
assumptions about signal model
Pro: No reliance on simulation
Focus of LHC Olympics
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Assumptions

 Rarity: Pr(anomaly) « Pr(normal)
 Overlap: max x p(x|anomaly)/p (x|normal) < oo

» Resonance: Pr(|m —m0| > §lanomaly) = 0 for some feature m
(often a mass) and fixed mQ, 6

- Smoothness: p (x|m, normal) varies slowly with m so that one
can use data with |[m — m0Q| > 6 to estimate

p(x|m,normal) for |m —m0| < 6

SB § SR § SB m

Pdata(z|m € SB)
= ppg(z|m € SB)

Pdata(7|m € SB)

pdata(a?‘m S SR) _ pbg($‘m c SB)




Overall Strategy

* Define an anomaly score a
* Should be high for anomalous (signal-
like) and low for background-like data

* Use a selection a to create an anomaly-
enriched dataset

» Estimate background from data
e Compare predicted background to number

of observed with high a (+potentially other
selection criteria)

Idea behind LHC Olympics: Provide dataset
that allows exercising all these steps

6



History
* Ancient LHC Olympics

* Four workshops 2005—2007 / prior starting to
LHC

* Assumed new physics would be plenty, focus
on characterisation of new physics models

First LHCO lost to sands of time:
http://ph-dep-th.web.cern.ch/ph-dep-th/content2/workshops/IhcOlympics/lhcolympicsl.html

Signin  Directory

Department of Theoretical Physics ABOUT - PEOPLE EVENTS - VISIT - THGUIDE -~ EDI ~ JOBS

Page not found

Page not found, or something went wrong with the web server.

Data Challenge

4th LHC WorkShOp Using event generators in combination with the PGS-4 detector simulation, a number of black box data sets
{ \ < \ have been generated. The boxes are presented as a data challenge to participants, who are invited to try to

figure out the underlying theoretical model. This round of the LHCO has two new black box data sets.

. A) The SLAC LHC Olympics Black Box contains signal only -- no background -- for 20 fbA-1 of
Princeton, 22 March, 2007 LHC data. The black box' creators are John Conley, Michael Peskin, and Tommer Wizansky.

B) The Cornell/Harvard LHC Olympics Black Box represents about 10 fbA-1 of new physics data.
This black box has been created by Patrick Meade, Peter Onyisi, Maxim Perelstein, and Matt Reece.

Information

The LHC Olympics is a collective effort by theorists to train themselves in establishing a correspondence between

theoretical models and experimental signatures using collider simulation. This is done by developing and distributing user-

friendly versions of simulation and data analysis tools, and via a series of black box exercises, in which participants are An explanation of the LHCO format and suggestions for how to get started on analyzing them can be found on
challenged to disentangle simulated LHC data sets. The first three LHC Olympics workshops were held at CERN in July the black box web pages the LHCO wiki . The login for the wiki is "olympian" and password is "blackbox."
2005 and February 2006, and the KITP in August 2006 . All LHCO participants are free to use the wiki to add comments, ask questions, make suggestions, etc.

held from March 21-24, 2007, in Princeton. The workshop will bring toggler high energy physicists with expertise ra-n-ging
from formal theory to collider phenomenology, simulation and experiment. The meeting is held jointly with the second The programs used to generate the boxes are in continuing development. To keep apprised of possible updates
workskop in the "Monte Carlo Tools for Beyond the Standard Model Physics” (MCABSM) series. to the boxes, it is advisable to regularly check the BB webpages and the LHCO wiki for announcements.



http://ph-dep-th.web.cern.ch/ph-dep-th/content2/workshops/lhcOlympics/lhcolympicsI.html

Motivation

Encourage development and comparison of model-agnostic
search strategies

* Focus on group anomalies, data-driven searches

Provide a complete package, balance details vs accessiblity

Datasets:

 One R&D dataset for algorithm development

* Three black box datasets (BB1-BB3)

 Unblinded over time

Timeline:

Spring 2019: Release R&D dataset (link)
Autumn 2019: Release BB datasets (link)
January 2020: Winter Olympics as part
of ML4Jets, unblinding of BB1 (link)

Welcome to the home of the LHC
Olympics 2020!

https://lhco2020.github.io/homepage/

July 2020: (Virtual) Summer Olympics, unblinding of

BB2 and BB3 (link)

LHC Olympics paper (https://arxiv.org/abs/2101.08320)

public



https://zenodo.org/record/6466204#.YoydSpNBxqs
https://zenodo.org/record/4536624#.Yoz_7pNBz0o
https://indico.cern.ch/event/809820/sessions/329216/#20200116
https://indico.desy.de/event/25341/
https://arxiv.org/abs/2101.08320
http://www.apple.com/uk

Datasets

Data format:
* 3-vectors of reconstructed particles in the event
e pt, eta, phi, (m assumed to be zero)
e Leading 700 particles (zero-passed otherwise)
 -> 2100 dimensional input space

Also provided a much lower dimensional
representation
e Clustering into two jets and using mass/
substructure
* O(10) dimensional input space

No other quantities (e.g. flavor tagging) included

Single R=1 jet trigger pT>1.2 TeV

Generation with Pythia/Herwig; detector simulation
with Delphes

Setting R&D | BB1 | BB3
Tune:pp 14 3 10
PDF:pSet 13 12 5)
TimeShower:alphaSvalue 0.1365 | 0.118 | 0.16
SpaceShower:alphaSvalue 0.1365 | 0.118 | 0.16
TimeShower:renormMultFac 1 0.5 2
SpaceShower:renormMultFac 1 0.5 2
TimeShower:factorMultFac 1 1.5 0.5
SpaceShower:factorMultFac 1 1.5 0.5
TimeShower:pTmaxMatch 1 2
SpaceShower:pTmaxMatch 0 2




R&D dataset

For building and testing methods —

1M background examples (Standard Model), m=100 GeV
100k signal examples (signal, see Feynman diagram
on the right)

Labels provided

Relatively simple signal
 Known to differ in previously mentioned
features from background distribution
Unrealistically high S/B

| LHC02020 105 LHC02020
_40000; my,, anomaly ‘g5 QR iggi --- Fit(KSp= 0.66)
30000} Amj, anomaly | TTTeeelil L Normal
= PSSl [ Anomaly
% 20000t 0 mj,, normal 104 i TTesdl
© 10000} [] Amj, normal 2 : Tl
o L o SN IS I R B By
0.0 0.2 0.4 0.6 0.8 1.0 % 103 =
Feature g
k7
30000 LHCOZOZO %
» 25000¢ T,1,1, anomaly OO0 T21,1, normal | O 102t
g 20000} Tp1 2, anomaly  [] Ty; o, normal |

2 15000} | [
510000- : . ol i i . ‘
5000} - 2500 3000 3500 4000 4500 5000
0 . : m

0.0 0.2 0.4 0.6 0.8 1.0
Feature

2107.02821
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Challenge datasets: BB1

 All contain total of 1M examples; might contain signal;
no labels provided during ‘content’ phase (labels available no)

 All used different simulation parameters for background (to avoid
unrealistic exploits)

 BB1: 834 signal examples
Same event topology as R&D dataset, different masses

might be easy?

m=378 GeV 4

m=3.823TeV .
Z/

q

m=732 GeV,

11



Challenge datasets: BB2

All contain total of 1M examples; might contain signal;

no labels provided during ‘content’ phase (labels available no)

All used different simulation parameters for background (to avoid
unrealistic exploits)

Additional pure-background sample provided (again with a different tune)

BB2: 0 signal examples; Herwig++ instead of Pythia for background

test for false positives

12



Challenge datasets: BB3

All contain total of 1M examples; might contain signal;

no labels provided during ‘content’ phase (labels available no)
All used different simulation parameters for background (to avoid
unrealistic exploits)

Additional pure-background sample provided (again with a different tune)

BB3: 4 Dijet signature 9

mX = 4.2 TeV and two decay modes:
1200 signal events in di-jet signature
2000 signal events in tri-jet signature .
(finding individual excess should not q Y
yield significance)

should be challenging q Trijet signature 4

X

13



Evaluation criteria

 What you should report:

* A p-value associated with the dataset having no new particles
(null hypothesis).

* As complete a description of the new physics as possible. For
example: the masses and decay modes of all new particles
(and uncertainties on those parameters).

 How many signal events (+uncertainty) are in the dataset
(before any selection criteria).

* Partial submissions in only a subset of the categories are
welcome!

(Goal not to necessarily pick ‘one winner’ but
to get a useful understanding of
anomaly detection capabilities)

14



Overview of Methods

3 Unsupervised

3.1
3.2
3.3
3.4
3.9

3.6
3.7
3.8
3.9

4.1
4.2

4.3
4.4
4.5

Anomalous Jet Identification via Variational Recurrent Neural Network
Anomaly Detection with Density Estimation

BuHuLaSpa: Bump Hunting in Latent Space

GAN-AE and BumpHunter

Gaussianizing Iterative Slicing (GIS): Unsupervised In-distribution Anomaly
Detection through Conditional Density Estimation

Latent Dirichlet Allocation

Particle Graph Autoencoders

Regularized Likelihoods

UCluster: Unsupervised Clustering

Weakly Supervised

CWoLa Hunting

CWoLa and Autoencoders: Comparing Weak- and Unsupervised methods
for Resonant Anomaly Detection

Tag N’ Train

Simulation Assisted Likelihood-free Anomaly Detection
Simulation-Assisted Decorrelation for Resonant Anomaly Detection

5 (Semi)-Supervised

5.1
5.2
0.3
5.4

Deep Ensemble Anomaly Detection

Factorized Topic Modeling

QUAK: Quasi-Anomalous Knowledge for Anomaly Detection
Simple Supervised learning with LSTM layers

(No labels)

(Noisy labels)

(Partial / full labels)

Some examples and trends in the following.

For exhaustive discussion, refer to

2101.08320

15



Unsupervised - Autoencoders

e Several autoencoder-type learning approaches
* Underlying assumption is that an autoencoder trained on
background dominated sample will have bad reconstruction

performance for previously unseen signal
S L(x) = [z — go(fo(2))]2
a(x) = L(x)

Encoder/Decoder are neural

networks
X
Compressed
representation

Input data Latent space Output data
e.g. images, (same format as
high level input)

observables,
four vectors

e Differences in data representation
Data space vs latent space anomaly detection
Different latent space prior distributions

16



Limitations

QCD 0% Top

Signal
Background

't 1600 |- 1’1 ﬂ
Complexity fd ‘fLOnIy QCD for training

 |If anomalies are much simpler (therefore
easier to reconstruct):
a(x) will still be lower, despite never
encountered in training

* Observed with naive AE in QCD vs top

* Train on tops only; top still considered
anomaly wrt/ QCD

Number of Samples

L

O | | e AN

5 X -5
More anomalous "

oor :f\‘fLQCD Signal

f [ Background

/ nIy top for training

800 -

600 - L Tim Weber. MSc thesis.
o | Top Hamburg, 2019;

jjso 2104.09051
200 |- ( | \LL,,%‘

-5 5
"More anomalous ™" "

Number of Samples
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Limitations

_ Mostly QCD for training
Complexity
 |f anomalies are much simpler (therefore QCD
easier to reconstruct): Top

a(x) will still be lower, despite never
encountered in training

* Observed with naive AE in QCD vs top

* Train on tops only; top still considered
anomaly wrt/ QCD

00 02 04 06 08 1.0
More anomalous

e Can be overcome (e.g. by structuring
the latent space)

Mostly top fJor training

QCD B. Bjllon, T Plehn, et al
2104.08291

Top

0.0 0.2 04 0.6 0.8 1.0

18 < More anomalous




Unsupervised - Density Estimation

Train density estima

here\

<
and sample here —|
TTH
(Corresponds | | »
to training a SB ; SR ; SB m
background model Pasa(tlm € SB) o gy Pdata(tlm € SB)
on data,) = ppg(z|m € SB) = ppg(xz|m € SB)

e (Conditional transport and sampling

e Train density estimator (e.g. conditional
normalising flow) in sideband

e |nterpolate to signal region
e Sample data there

e This produces ‘extrapolated-background’
19



Unsupervised - Density Estimation

 Compare extrapolated-background to actual data

* Either by also training a density estimator in signal region and

building the likelihood ratio (GIS-approach, ANODE) R(z|m) = Pdata(2|m)
Ppvackground (CB ‘ m)
1055— 5 L | | | SigrgalRegipn
5: ' ' ' ' = ' ' ) - Hll Background
] 5 al o Signal
S af (o :
%" 10°© 10! cégznts 103 104 3
& 1S
-~ 3 - x
g o g 2t
3
N2
(e} 1t
1 2750 3000 3250 3500 3750 4000 4250 161163165 0

MJJ [GeV]

log (pbackground(xl m))

» Or by training a classifier between e
extrapolated-background and actual data (e.qg. — Camhooe

CATHODE / 2109.00546 or CURTAINS /
2203.09470) (post-LHCO)

103 E .....

102 E

10! E

Rejection (1/False Positive Rate)

ol T LT -

20 21 09@05462 0.4 0.6 0.8 1.0

Signal Efficiency (True Positive Rate)



Events / 100 GeV

Mixed Sample 1

Weak Supervision: CWola

Mixed Sample 2
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Important observation:
A classifier (i.e. a neural network) trained
to distinguish two mixed samples learns
to distinguish the components
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prv,  feps+ (1— f2)pB

-~ faLgp+ (1 — f2)

Use increasingly tight selections
to identify
localised signal.

Major downside: Correlations
between mass and
other features

1708.02949, 1902.02634,
see also talk by Ines on ATLAS study



Weak Supervision: TNT and SALAD

T N T (2 O 02 . 1 2 3 7 6) : Events Initial Classifier Clasr:/ivﬁ((:?j Eyvents -glil”:llgsli\ll‘ieevrv Icr:r;gsrts)i\;; :
Interesting signal might contain two | g
anomalous jets per event. Use perjet P

classifiers to build enriched datasets for | 01:8
training.

1] Datar (Pythia) SALAD (2001.05001):
w1 1 Signal 1 Use classifier-based reweighting
g§10°) | (DCTR approach / 1907.08209) to learn mapping
107 | background simulation in sideband to data.
12; A | i Apply in signal-region and treat non-closure
1.50p—— . ——— as anomal
2510 bt AL ’
e2oms| I T Ww | Il w(z|m) = f(x) _ p(x|data) y p(data)
o 2000 000 een oo o0 ~ 1— f(x) p(x|simulation)  p(simulation)
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Semi-supervised

Signal-classifier based training
Train a classifier on a potential signal
(or cocktail of potential signals!) and

use like in a fully supervised search.
QUAK (2011.03550):

Combine potential signals (supervised) and unlabelled
data. Essentially use different signal priors to build a
latent space in which to search for anomalies.

Anomalous features
Prior Free Fully Supervised | usfeaures ™ N
3D QUAK

Semi-Supervised | |5, o=
Approaches o am

Autoencoder Classic

Q

Background

QUAK »°
-

If it quaks
like a duck?

0,0,0 Background Loss



Reporting of results

Section Short Name Method Type Results Type
3.1 VRNN Unsupervised (i) (BB2,3) and (ii) (BB1)
3.2 ANODE Unsupervised (iii)
3.3 BuHuLaSpa Unsupervised (i) (BB2,3) and (ii) (BB1)
3.4 GAN-AE Unsupervised (i) (BB2-3) and (ii) (BB1)
3.5 GIS Unsupervised (i) (BB1)
3.6 LDA Unsupervised (i) (BB1-3)
3.7 PGA Unsupervised (ii) (BB1-2)
3.8 Reg. Likelihoods Unsupervised (iii)
3.9 UCluster Unsupervised (i) (BB2-3)
4.1 CWoLa Weakly Supervised (ii)) (BB1-2)
4.2 CWoLa AE Compare | Weakly/Unsupervised (iii)
4.3 Tag N’ Train Weakly Supervised (i) (BB1-3)
4.4 SALAD Weakly Supervised (iii)
4.5 SA-CWoLa Weakly Supervised (iii)
5.1 Deep Ensemble Semisupervised (i) (BB1)
5.2 Factorized Topics Semisupervised (iii)
5.3 QUAK Semisupervised (i) (BB2,3) and (ii) (BB1)
5.4 LSTM Semisupervised (i) (BB1-3)

[) during challenge phase
li) after challenge phase
lif) R&D dataset used



Results - BB1

ResNet + BDT

PCA;

LSTM

High-level features AE
Tag N Train+

Density Estimation (GIS) 1
VRNN

Latent Dirchlet Allocation

Human NN

0

2000 4000 6000
Resonance Mass [GeV]

-5

0
Pull

ResNet + BDT

PCA

LSTMH

High-level features AE
Tag N Train

Density Estimation (GIS) 1
VRNN ;

Latent Dirchlet Allocation

Human NN 1

0

500 1000

1500-5
Daughter Particle A Mass [GeV]

0
Pull

5

ResNet + BDT

PCA;

LSTM

High-level features AE
Tag N Train-

Density Estimation (GIS)
VRNN 1

Latent Dirchlet Allocation

Human NN -

10°

102 104
Number of Signal Events

10° -5

ResNet + BDT| ®

PCA

LSTM+

High-level features AE
Tag N Train

Density Estimation (GIS)
VRNN

Latent Dirchlet Allocation{ ®

Human NN 1

0

500 1000

1500-5

Daughter Particle B Mass [GeV]

(Shown are results during challenge)

Several approaches identified resonance; density
estimation also found correct properties

0
Pull
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Results - BB2

Reminder: no signal injected

Some methods reported resonances in the tail of the mass distribution (around
4.5 TeV)
Difficult to predict for edges of phase space

Latent Dirichlet Allocation: Our method extracts signal descriptions which
appear convincing, however the classifier does not identify a bump in the
iInvariant mass spectra. Without this we were unable to determine that a signal
was present. The di-jet description extracted consisted of one jet of mass
350-400 GeV and another of mass 150-200 GeV. If the production of these
states was non-resonant, we would be unable to find the signal with our
method. Or if more than just di-jets were relevant to reconstruct the invariant
mass, we would also not be able to find it. Otherwise, we determine that no

signal was present in the data.



Results - BB3

Reminder: di-jet and tri-jet topologies

Different observations claimed, none identified the correct
signal.



Lessons learned

Anomaly detection is difficult

e Even for “anomalies” close to already considered signals
e Even more so for “exotic” signals

e \alue in blind studies

Robust uncertainty quantification needed - especially for tails of
distributions

Many methods used “sidebanding” in invariant mass + learning some
anomaly detector.

e |ess reliance on peaks annd

e less reliance on one ‘lucky’ (physically inspired) variable desirable

Did not discuss data representation: image vs point cloud vs ... vs high-
level features
e Will bias anomaly detection performance. Need to understand better.

28



Other open issues

Strategies to assess the quality of anomaly detection techniques without (or
at least with less) dependence on specific signal models? Right now, the
strategy seems to be to compare the ability of ADs to find some benchmark
signals.

Can there be robust methods to set exclusion limits with ‘data only’
anomaly dectors (i.e. methods where all final trainings are carried out on
data - as opposed to training on simulation) without injecting signal events
into the data.

How to to publish the on-data-trained anomaly detectors in such a way that
allows ex-post analysis by people outside the experiment whether the
training result is compatible / rules out a given new physics signals.

Methods to go from an observed anomaly (ie. a signal like excess in some

region of data) to an interepretation in terms of physics models can still be
improved as well.
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Conclusions

Exciting space of anomaly detection in
LHC physics

First successes and breadth of ideas
but better understanding and more
applications needed

Potential to search for more signatures
with less people, even while some
conceptual issues are being resolved

Also applies to other areas (e.qg.
data quality / detector operations)

Thank you!
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