Goodness of Fit - Thoughts for Discussion

Richard Lockhart

PHYSTAT Anomalies

May 25, 2022

Conclusions

- I will talk about Goodness-of-Fit generically.
- ▶ I won't tell anyone how to do ML.
- ▶ I will ask what kind of statistical problem you have.
- I will make a list of ideas that caught my attention.

LHC setup in my words

- ▶ Data: sample of N (Poisson) events (recorded as vectors X_i).
- Statistical (background) Model: Standard Model plus Detector Model.
- ▶ Looking for: other events not predicted by Statistical Model.
- ▶ Three statistical attitudes to this problem:
 - This is a two sample problem.
 - ▶ This is a goodness-of-fit problem.
 - This is a screening problem.

Two sample problem

- You have a sample of data from the LHC after cuts applied.
- And you have a background sample: Monte Carlo or side-bands.
- Statistical Model has parameters not perfectly known.
- Some estimated within expt, some externally.
- Surely you cannot sample from this model.
- Reason: all events in data have same parameter values; not known.
- Exceptions? Require parameter uncertainty negligible compared to signal.

GOF for statisticians

▶ Statistical Model: family of densities or intensities, b(x); $x \in \mathcal{X}$, for data:

$$\{b \in \mathcal{B}\}.$$

▶ Most common case in statistical literature: \mathcal{B} is parametrized:

$$\mathcal{B} = \{b(x; \theta) : \theta \in \Theta_B\}$$

- Goal is to decide if true density is in B.
- ► Traditional framing: f₀ is true density/intensity. Test null

$$H_0: f_0(\cdot) = b(\cdot; \theta_0)$$
 some $\theta_0 \in \mathcal{B}$

versus

versus
$$H_1: f_0 \notin \mathcal{B}$$
.

• Vector θ includes parameters of SM not exactly known.

▶ For anomaly searches high power is very much desired.

- ▶ For anomaly searches high power is very much desired.
- Especially at correct non SM model of universe.

- For anomaly searches high power is very much desired.
- Especially at correct non SM model of universe.
- ► Fact: most users of GOF tests want null to be right; less incentive for powerful tests.
- Other framings may make more sense:
- Maybe goal of Anomaly detection is "screening": identify large number of possible anomalies to study in detail at LHC.

- For anomaly searches high power is very much desired.
- Especially at correct non SM model of universe.
- ► Fact: most users of GOF tests want null to be right; less incentive for powerful tests.
- Other framings may make more sense:
- Maybe goal of Anomaly detection is "screening": identify large number of possible anomalies to study in detail at LHC.
- Identify large number of anomalies to justify building different detectors.

One testing strategy: parametric null

▶ Model predicts mean (expectation) value of $H(\mathbf{X};t):t\in\mathcal{T}$ is

$$\mu(t,\theta) = \langle H(\mathbf{X};t) \rangle$$
.

 Study Empirical Discrepancy (here n is expected background total)

$$W_n(t,\theta) = \frac{1}{\sqrt{N}} \sum_{i=1}^N \left\{ H(\mathbf{X}_i,t) - \mu(t,\theta) \right\}.$$

- ▶ Build P-value out of distribution of univariate summary of size of W.
- Classic summaries: linear, quadratic, supremum.
- ▶ Important: null distribution usually depends strongly on \mathcal{B} .
- And on true parameter value inside B.

Quadratic Examples

- Empirical Distribution Function (EDF) tests: Anderson-Darling (AD), Cramér-von Mises (CvM).
- $CvM/AD: H(x,t) = w(t,\theta)1(B(x,\theta) \le t)$
- ▶ In general:

$$\int_t \left\{ w(t,\theta) W_n(t,\theta) \right\}^2 dt$$

or

$$\frac{1}{M}\sum_{j=1}^{M}\left\{w(t_j,\theta)W_n(t_j,\theta)\right\}^2$$

evaluated at some estimate of θ_0 .

▶ Get P values? Yes – if you understand θ

Effect of uncertainty in parameters

▶ Linearization of $H - \mu$ in θ near θ_0 :

$$W_n(t,\theta) \approx W_n(t,\theta_0) + \sqrt{N} (\theta - \theta_0)^{\top} \nabla_{\theta} \mu(t,\theta) \Big|_{\theta_0}.$$

- ▶ Approximately Gaussian Process in θ , locally.
- ▶ Evaluate at estimate of θ : internal to data, external to data, some of both.
- ▶ Use MLE: variability reduced often a lot.
- ▶ Use uncertain estimate from other data: variability increased.
- So increased by systematics, decreased by fitting.
- Maximal decrease by Maximum Likelihood.
- Fit more parameters get smaller statistics.

P-values

Null limit distribution

$$\sum_{k=1}^{\infty} e_k Z_k^2 = \text{ linear combination of } \chi_1^2$$

- ▶ The e_k are eigenvalues of approx covariance function of $W_n(t, \hat{\theta})$.
- Each Z_k is limit of centered scaled sample mean of corresponding eigenfunctions.
- ▶ LRT is, for large *n*, essentially in this class. Smooth tests too.
- ▶ IF, you have suitable theory about estimate $\hat{\theta}$, THEN, the e_k can be estimated and P computed / approximated by numerical Fourier inversion (lmhof 1962).
- ▶ For maximum likelihood use sandwich estimate.
- For externally estimated (systematics) use independence.

Bayes

- If null hypothesis is NOT composite then NP lemma can be used.
- ▶ Like NP constrain type 1 error rate.
- ► Maximize average power wrt prior on alternative.
- Strategy following Andrea Wulzer. Model

$$\frac{p(x|w)}{p(x|R)} = exp(f(x,w))$$

- ▶ Make f(x, w) GP with covariance. Roeder and Wasserman (1997).
- ▶ Localized to $n^{-1/2}$ neighbourhood result is U statistic.
- Power depends on eigenfunctions of covariance.
- Smooth tests are example with finite spectrum.
- Posterior can point, maybe to nature of departure.

Conclusions.

► TBD