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Conclusions

I I will talk about Goodness-of-Fit generically.

I I won’t tell anyone how to do ML.

I I will ask what kind of statistical problem you have.

I I will make a list of ideas that caught my attention.
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LHC setup in my words

I Data: sample of N (Poisson) events (recorded as vectors Xi ).

I Statistical (background) Model: Standard Model plus
Detector Model.

I Looking for: other events not predicted by Statistical Model.

I Three statistical attitudes to this problem:

I This is a two sample problem.
I This is a goodness-of-fit problem.
I This is a screening problem.
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Two sample problem

I You have a sample of data from the LHC after cuts applied.

I And you have a background sample: Monte Carlo or
side-bands.

I Statistical Model has parameters not perfectly known.

I Some estimated within expt, some externally.

I Surely you cannot sample from this model.

I Reason: all events in data have same parameter values; not
known.

I Exceptions? Require parameter uncertainty negligible
compared to signal.
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GOF for statisticians

I Statistical Model: family of densities or intensities,
b(x); x ∈ X , for data:

{b ∈ B}.

I Most common case in statistical literature: B is parametrized:

B = {b(x ; θ) : θ ∈ ΘB}

I Goal is to decide if true density is in B.

I Traditional framing: f0 is true density/intensity. Test null

H0 : f0(·) = b(·; θ0) some θ0 ∈ B

versus
versus H1 : f0 6∈ B.

I Vector θ includes parameters of SM not exactly known.
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Commentary

I For anomaly searches high power is very much desired.

I Especially at correct non SM model of universe.

I Fact: most users of GOF tests want null to be right; less
incentive for powerful tests.

I Other framings may make more sense:

I Maybe goal of Anomaly detection is “screening”: identify
large number of possible anomalies to study in detail at LHC.

I Identify large number of anomalies to justify building different
detectors.
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One testing strategy: parametric null

I Model predicts mean (expectation) value of H(X; t) : t ∈ T is

µ(t, θ) = 〈H(X; t)〉 .

I Study Empirical Discrepancy (here n is expected background
total)

Wn(t, θ) =
1√
N

N∑
i=1

{H(Xi , t)− µ(t, θ)} .

I Build P-value out of distribution of univariate summary of size
of W .

I Classic summaries: linear, quadratic, supremum.

I Important: null distribution usually depends strongly on B.

I And on true parameter value inside B.
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Quadratic Examples

I Empirical Distribution Function (EDF) tests:
Anderson-Darling (AD) , Cramér-von Mises (CvM).

I CvM/AD: H(x , t) = w(t, θ)1(B(x , θ) ≤ t)

I In general: ∫
t
{w(t, θ)Wn(t, θ)}2 dt

or

1

M

M∑
j=1

{w(tj , θ)Wn(tj , θ)}2

evaluated at some estimate of θ0.

I Get P values? Yes – if you understand θ
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Effect of uncertainty in parameters

I Linearization of H − µ in θ near θ0:

Wn(t, θ) ≈Wn(t, θ0) +
√
N (θ − θ0)>∇θµ(t, θ)

∣∣∣
θ0
.

I Approximately Gaussian Process in θ, locally.

I Evaluate at estimate of θ: internal to data, external to data,
some of both.

I Use MLE: variability reduced – often a lot.

I Use uncertain estimate from other data: variability increased.

I So increased by systematics, decreased by fitting.

I Maximal decrease by Maximum Likelihood.

I Fit more parameters get smaller statistics.
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P-values

I Null limit distribution

∞∑
k=1

ekZ
2
k = linear combination of χ2

1

I The ek are eigenvalues of approx covariance function of
Wn(t, θ̂).

I Each Zk is limit of centered scaled sample mean of
corresponding eigenfunctions.

I LRT is, for large n, essentially in this class. Smooth tests too.

I IF, you have suitable theory about estimate θ̂, THEN, the ek
can be estimated and P computed / approximated by
numerical Fourier inversion (Imhof 1962).

I For maximum likelihood use sandwich estimate.

I For externally estimated (systematics) use independence.
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Bayes

I If null hypothesis is NOT composite then NP lemma can be
used.

I Like NP constrain type 1 error rate.

I Maximize average power wrt prior on alternative.

I Strategy following Andrea Wulzer. Model

p(x |w)

p(x |R)
= exp(f (x ,w))

I Make f (x ,w) GP with covariance. Roeder and Wasserman
(1997).

I Localized to n−1/2 neighbourhood result is U statistic.

I Power depends on eigenfunctions of covariance.

I Smooth tests are example with finite spectrum.

I Posterior can point, maybe to nature of departure.
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Conclusions.

I TBD
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