
1

Sezen Sekmen (Kyungpook Nat. U., CMS)  
Gökhan Ünel (UC Irvine - ATLAS) 

Burak Şen (METU)

Run2 new physics
search example with

ADL/CutLang

CMS Open Data Workshop 2022 
1-4 August 2022, CERNTutorial page : link 

ADL Documentation and references : cern.ch/adl

Other contributors: Ronja Ohrnberg (Helsinki), Junghyun Lee (KNU)

https://cms-opendata-workshop.github.io/workshop2022-lesson-run2-adlcl/
http://adl.web.cern.ch/index.html

We usually perform analyses using using analysis software frameworks based on general
purpose languages like C++ or Python.

• Flexible method.

• Straightforward for simple analyses

• New systems based on Python allow easy access to libraries —> we can easily perform a

large set of analysis tasks.

The traditional approach

2

What if we have a more complex analysis?

3
arXiv:2205.09597: CMS Search for Electroweak SUSY in WW, WZ and WH hadronic final states

Different objects, different regions, most depending on each other.

https://arxiv.org/abs/2205.09597

Emerging alternative: ADL

4

We can of course write this analysis with any GPL-based system.

However, it becomes increasingly hard to visualize and keep track of the physics
algorithm details.

Main reason for complexity: Physics content and technical operations are intertwined and
handled together.

More intricate physics algorithm —> more complex code.

Emerging approach: Analysis Description Language (ADL):

• Write the physics logic with a customized, self-describing syntax.

• Decouple the physics algorithm from purely technical tasks

• Describe analyses in a more intuitive and physics-focused way.

Analysis Description Language (ADL) is a declarative domain specific language (DSL) that
describes the physics content of a HEP analysis in a standard and unambiguous way.

• External DSL: Custom-designed syntax to express analysis-specific concepts. Reflects

conceptual reasoning of particle physicists. Focus on physics, not on programming.

• Declarative: Tells what to do, but not how to do it.

• Human-readible: Clear, self-describing syntax rules.

• Designed for everyone: experimentalists, phenomenologists, students, interested public…

ADL is framework-independent —> Any framework recognizing ADL can perform tasks with it.

• Decouples physics information from software / framework details.

• Multi-purpose use: Can be automatically translated or incorporated into the GPL / framework

most suitable for a given purpose, e.g. exp, analysis, (re)interpretation, analysis queries, …

• Efficient communication between groups: exp, pheno, referees, students, public, …

• Accessible preservation of analysis physics logic.

Analysis description language for HEP

5

ADL scope

• Event processing: Priority focus.

simple and
composite

object
definitions (jets,

muons, Ws,
RPV stops, …)

event variable
definitions (MT2,

angular variables,
BDTs…)

event selection
definitions

(signal, control,
validation

regions, …)

input:

event

content

output:

event
selection

Event processing…

6

• Analysis results, i.e. counts and uncertainties: Available

• Histogramming: Available.

• Systematic uncertainties: Within the scope. Syntax design in progress.

• Operations with selected events, e.g. background estimation, scale factor derivation: Very

versatile. Not within the scope yet.

The ADL construct

ADL consists of

• a plain text ADL file describing the analysis

algorithm using an easy-to-read DSL with
clear syntax rules.

• a library of self-contained functions
encapsulating variables that are non-trivial
to express with the ADL syntax (e.g. MT2,
ML algorithms). Internal or external (user)
functions.

blocktype	blockname

		keyword1	instruction1 
		keyword1	instruction2

		keyword3	instruction3	#	comment

• ADL file consists of blocks separating object,
variable and event selection definitions.
Blocks have a keyword-instruction structure.

• keywords specify analysis concepts and

operations.

7

ADL syntax rules with usage examples: link

LHADA (Les Houches Analysis Description Accord): Les Houches 2015 new physics WG report (arXiv:1605.02684, sec 17)

CutLang: Comput.Phys.Commun. 233 (2018) 215-236 (arXiv:1801.05727), Front. Big Data 4:659986, 2021  
 Several proceedings for ACAT and vCHEP

• Syntax includes mathematical and logical
operations, comparison and optimization
operators, reducers, 4-vector algebra and HEP-
specific functions (dφ, dR, …). See backup.

cern.ch/adl

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ADL
https://arxiv.org/abs/1605.02684
https://arxiv.org/abs/1801.05727
http://adl.web.cern.ch/index.html

A very simple analysis example with ADL

#	OBJECTS

object	goodMuons

		take	muon

		select	pT(muon)	>	20

		select	abs(eta(muon))	<	2.4 
 

object	goodEles

		take	ele

		select	pT(ele)	>	20

		select	abs(eta(ele))	<	2.5 
 

object	goodLeps

		take	union(goodEles,	goodMuons) 
 

object	goodJets

		take	jet

		select	pT(jet)	>	30

		select	abs(eta(jet))	<	2.4

		reject	dR(jet,	goodLeps)	<	0.4

8

#	EVENT	VARIABLES

define	HT	=	sum(pT(goodJets))

define	MTl	=	Sqrt(2*pT(goodLeps[0])	*	MET*(1-cos(phi(METLV[0])	-	phi(goodLeps[0]))))

#	EVENT	SELECTION

region	baseline

		select	size(goodJets)	>=	2

		select	HT	>	200

		select	MET	/	HT	<=	1

region	signalregion

		baseline

		select	Size(goodLeps)	==	0

		select	dphi(METLV[0],	jets[0])	>	0.5

region	controlregion 
		baseline 
		select	size(goodLeps)	==	1

		select	MTl	<	120

ADL implementations of some LHC analyses: https://github.com/ADL4HEP/ADLLHCanalyses

https://github.com/ADL4HEP/ADLLHCanalyses

Once an analysis is written it needs to be run on events.

This is achieved by CutLang , the runtime interpreter that reads and understands the ADL
syntax and runs it on events.

• A runtime interpreter does not require to be compiled.

• The user only modifies the ADL description, and runs CutLang.

• CutLang is also a framework which automatically handles many tedious tasks as reading

input events, writing output histograms, etc.

• CutLang runs on various environments such as linux, mac, conda, docker, jupyter, etc.

CutLang

9

CutLang Github repository: https://github.com/unelg/CutLang 
Comput.Phys.Commun. 233 (2018) 215-236 (arXiv:1801.05727), Front. Big Data 4:659986, 2021 (arXiv:2101.09031),  
Several proceedings for ACAT and vCHEP

https://github.com/unelg/CutLang
https://arxiv.org/abs/1801.05727
https://arxiv.org/abs/2101.09031

ADL helps to design and document a single analysis in a
clear and organized way.

But its distinguishing strength is in navigating and exploring
the multi-analysis landscape.

An ADL analysis database is a great source of information
and can be used for performing physics studies.

10

11

Tutorial time!

ADL syntax: main blocks, keywords, operators

12

Block purpose Block keyword
object definition blocks object
event selection blocks region
analysis or ADL information info
tabular information table

Keyword purpose Keyword
define variables, constants define
select object or event select
reject object or event reject
define the mother object take
apply weights weight
bin events in regions bin, bins
sort objects sort
define histograms histo
save variables for events save

Operation Operator

Comparison operators > < => =< == !=

 [] (include)][(exclude)

Mathematical operators + - * / ^
Logical operators and or not

Ternary operator condition ? truecase :
falsecase

Optimization operators ~= (closest to) 
~! (furthest from)

Lorentz vector addition LV1 + LV2

LV1 LV2

ADL syntax rules with usage examples: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ADL

Syntax also available to write existing analysis results
(e.g. counts, errors, cutflows…).

 
Syntax develops further as we implement
more and more analyses.

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ADL

ADL syntax: functions

13

Standard/internal functions: Sufficiently
generic math and HEP operations could be
a part of the language and any tool that
interprets it.

•Math functions: abs(), sqrt(), sin(), cos(),

tan(), log(), …

•Collection reducers: size(), sum(), min(),

max(), any(), all(),…

•HEP-specific functions: dR(), dphi(), deta(),

m(), ….

•Object and collection handling: union(),

comb()…

External/user functions: Variables that cannot
be expressed using the available operators or
standard functions would be encapsulated in
self-contained functions that would be
addressed from the ADL file and accessible by
compilers via a database.

•Variables with non-trivial algorithms: MT2,

aplanarity, razor variables, …

•Non-analytic variables: Object/trigger

efficiencies, variables/efficiencies computed
with ML, …

ADL syntax rules with usage examples: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ADL

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ADL

