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Motivation

Understanding high-energy collisions requires
a description of physics across a wide range of scales (from O(ΛQCD) to O(TeV))

This talk

Lund diagrams as a (historical) conceptual tool for parton showers and resummations

promoting to a practical tool for jet physics

(Brief) overview of the wide range of applications

More extensive description of quark/gluon discrimination

Basic observation

Exploring widely different scales ↔ exposing the soft and collinear divergences of QCD
Obvious connections with parton shower and resummations
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Warmup: Lund diagrams

A useful representation of radiation in a jet
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Basic features of QCD radiations

Take a gluon emission from a (qq̄) dipole

pq

pq̄

k

Emission:

kµ ≡ zqp
µ
q + zq̄p

µ
q̄ + kµ⊥

3 degrees of freedom:

Rapidity: η = 1
2 log

zq
zq̄

Transverse momentum: k⊥
Azimuth ϕ

In the soft-collinear approximation

dP =
αs(k⊥)CF

π2
dη

dk⊥
k⊥

dϕ
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Basic features of QCD radiations: the Lund plane

Lund plane: natural representation uses the 2 “log” variables η and log k⊥

log kt η = − log tan(θ/2)
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Multiple emissions in the Lund plane

log kt η = − log tan(θ/2)

E k
≤
1
2
m qq̄

q sideq̄ side

a
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a
b c

Each emission spawns
its own plane

a, b primary
c secondary
...

Respects angular
ordering
(θc < θa)
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Take-home message #1

Lund diagrams represent (multiple) radiation across scales

Set of nice properties:

natural for thinking about resummations and parton showers

different physical regions (soft, collinear, hard, non-perturbative) well separated

organised in planes respecting angular ordering
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Lund planes:

promoting Lund diagrams to a practical tool

For simplicity, take a high-pt LHC jet (similar for full e+e− events)
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The Lund plane(s) representation (1/3)

use Cambridge/Aachen to iteratively recombine the closest pair

hard
hard

hard hard

hard

hard

so
ft

so
ft

so
ft

soft

so
ft

soft

consider the (de-)clusterings in the sequence

Note: conceptually the largest-energy (pt or z) branch ≡ emissions from the “leading parton”
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The Lund plane(s) representation (2/3)

larger angles smaller angles

closely follows our beloved
angular ordering

i.e. mimics partonic cascade

can be organised in Lund planes

primary
secondary
...

ln kt ≈ zθ

η ≈ ln 1/θ

watch out:
at commensurate angles
details of C/A matter
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The Lund plane(s) representation (3/3)

θi

θj

zi

zj

Ti ≡ {θi , kt,i , zi , ψi ,mi , . . . }

for jets in pp: (similar for ee events)

η = − ln∆R

kt = pt,soft∆R z =
pt,soft
pt,parent

ψ ≡ azimuthal angle

Two different Lund (L) structures
“primary plane”
(follow hard branch)

Lprim ≡ {Ti}
OR

full (de-)clustering tree

Ltree ≡ {T ,Lhard,Lsoft}

Lhard

LsoftLtree

T

Note: branchings with kt > tt,min ⇒ perturbative
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Take-home message #2

Central observation

For a jet (or a ee event) one can construct a structure that
captures the properties of Lund diagrams

The rest of this talk covers several applications:

✓ Calculations (and measurements)

✓ Monte-Carlo developments

✓ Tagging (incl. machine learning and quark/gluon discrimination)
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Application #1: QCD calculations
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Primary Lund plane multiplicity

Average number of emission at given kt , ∆R:

ρ =
1

Njets

d2N

d ln∆R d ln kt

soft
and

collinear

[A. Lifson, G. Salam, GS, arXiv:2007.06578]

Double-logarithmic behaviour:

ρ =
2αs(kt)CR

π

Single-log calculation including

✓ Running-coupling (trivial)
✓ ISR+large angle
✓ Hard-collinear branchings
✓ Clustering effects

+ Matching to NLO (∼ top)

+ NP corrections (∼ bottom)
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Primary Lund plane multiplicity

Average number of emission at given kt , ∆R:

ρ =
1

Njets

d2N

d ln∆R d ln kt

angular-ordered “DGLAP”

θ1 ≫ θ2 ≫ · · · ≫ θn

includes flavour changes

leading parton looses momentum

[A. Lifson, G. Salam, GS, arXiv:2007.06578]

Double-logarithmic behaviour:

ρ =
2αs(kt)CR

π

Single-log calculation including

✓ Running-coupling (trivial)
✓ ISR+large angle
✓ Hard-collinear branchings

✓ Clustering effects

+ Matching to NLO (∼ top)

+ NP corrections (∼ bottom)
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Primary Lund plane multiplicity

Average number of emission at given kt , ∆R:

ρ =
1

Njets

d2N

d ln∆R d ln kt

not prim C 2
F prim CFCA

complex E -ordered
structure (akin NGLs)

(semi-numerical treatment)

[A. Lifson, G. Salam, GS, arXiv:2007.06578]

Double-logarithmic behaviour:

ρ =
2αs(kt)CR

π

Single-log calculation including

✓ Running-coupling (trivial)
✓ ISR+large angle
✓ Hard-collinear branchings
✓ Clustering effects

+ Matching to NLO (∼ top)

+ NP corrections (∼ bottom)
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Primary Lund plane multiplicity

Average number of emission at given kt , ∆R:

ρ =
1

Njets

d2N

d ln∆R d ln kt

from NLOJet++
(some non-trivial details)

2→ 3 at NNLO would
greatly help!

[S.Abreu,F.Febres Cordero,H.Ita,
B.Page,V.Sotnikov,2102.13609]

[M.Czakon,A.Mitov,R.Poncelet,2106.05331]

[A. Lifson, G. Salam, GS, arXiv:2007.06578]

Double-logarithmic behaviour:

ρ =
2αs(kt)CR

π

Single-log calculation including

✓ Running-coupling (trivial)
✓ ISR+large angle
✓ Hard-collinear branchings
✓ Clustering effects

+ Matching to NLO (∼ top)

+ NP corrections (∼ bottom)
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Primary Lund plane multiplicity

Average number of emission at given kt , ∆R:

ρ =
1

Njets

d2N

d ln∆R d ln kt

hadronisation

U
E
/M

P
I

from Pythia8, Herwig7
and Sherpa2

[A. Lifson, G. Salam, GS, arXiv:2007.06578]

Double-logarithmic behaviour:

ρ =
2αs(kt)CR

π

Single-log calculation including

✓ Running-coupling (trivial)
✓ ISR+large angle
✓ Hard-collinear branchings
✓ Clustering effects

+ Matching to NLO (∼ top)

+ NP corrections (∼ bottom)
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Data v. theory

[ATLAS, 2004.03540]

0.02 0.05 0.1 0.2 0.5
z

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(
,z

)

k
t =

2 GeV

5 GeV

10 GeV
ln1/

ln
1/

z

ATLAS setup: 0.147 < < 0.205
ATLAS
NLO+resum+NP

good agreement (particularly for kt ≳ 5 GeV)

commensurate exp.&th. uncert.

Can we get αs from this?
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Lund multiplicity (1/2)

Lund multiplicity

count the (average) number of Lund declusterings
(in the full tree) with kt ≥ kt,cut

All-order structure (L=ln Q
kt,cut

):

⟨NLP(L, αs)⟩ = h1(αsL
2) +

√
αsh2(αsL

2)︸ ︷︷ ︸
Since 1992

+αsh3(αsL
2)︸ ︷︷ ︸

New NNDL!!

+ . . .

[R. Medves, A. Soto, GS, 2205.02861]

2πh
(q)
3 = Dq→qg

end +
(
Dg→gg
end + Dg→qq̄

end

) CF

CA
(cosh ν − 1) + Dqqg

hme cosh ν +
CF

CA

[
(1− c

δ
)Dqq̄

pair(cosh ν − 1) +
(
K + Dgg

pair + c
δ
Dqq̄
pair

) ν
2
sinh ν

]
+ CF

[(
cosh ν − 1− 1− c

δ

4
ν2
)
D

(prim)
clust + (cosh ν − 1)D

(sec)
clust

]
+

CF

CA

[
Dg
e-loss

ν

2
sinh ν +

(
Dq
e-loss − Dg

e-loss

)
(cosh ν − 1)

]
+

CF

CA

π2β20
8CA

[
3ν(2ν2 − 1) sinh ν + (ν4 + 3ν2) cosh ν

]
+

CF

2

{
(Bgg + c

δ
Bgq)

2ν2 cosh ν + 8
[
2c

δ
Bgg − 2c

δ
Bq − (1− 3c2

δ
)Bgq

]
Bgq cosh ν

+ [4Bq(Bgg + (2c
δ
+ 1)Bgq)− (Bgg + c

δ
Bgq)(Bgg + 9c

δ
Bgq)] ν sinh ν+4(1− c2

δ
)B2

gqν
2 + 8

[
2c

δ
Bq − 2c

δ
Bgg + (1− 3c2

δ
)Bgq

]
Bgq

}
+

CF

CA

πβ0
2

{
(Bgg + c

δ
Bgq)ν

3 sinh ν + [2Bq − 2Bgg + (6− 8c
δ
)Bgq] ν sinh ν+2(Bq + Bgg + Bgq)ν

2 cosh ν − 4(1− c
δ
)Bgq(2 cosh ν − 2 + ν2)

}

Side product: NNDL Cambridge multiplicity for ycut = k2
t,cut

lnQ

ln kt,cut

lnQ

ln kt,cut

lnQ

ln kt,cut

ln kt

η

lnQ

ln kt,cut

(finite z, 1−z)

lnQ

ln kt,cut

lnQ

ln kt,cut

lnQ

ln kt,cut

lnQ

ln kt,cut

Not NNDL lnQ

ln kt,cut

Not NNDLlnQ

ln kt,cut

ln kt

η

β0 × β0lnQ

ln kt,cut

β0× hard-coll.lnQ

ln kt,cut

ln kt

η
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Lund multiplicity (1/2)

Lund multiplicity
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2) +

√
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New NNDL!!

+ . . .

[R. Medves, A. Soto, GS, 2205.02861]

2πh
(q)
3 = Dq→qg

end +
(
Dg→gg
end + Dg→qq̄

end

) CF

CA
(cosh ν − 1) + Dqqg

hme cosh ν +
CF

CA

[
(1− c

δ
)Dqq̄

pair(cosh ν − 1) +
(
K + Dgg

pair + c
δ
Dqq̄
pair

) ν
2
sinh ν

]
+ CF

[(
cosh ν − 1− 1− c

δ

4
ν2
)
D

(prim)
clust + (cosh ν − 1)D

(sec)
clust

]
+

CF

CA

[
Dg
e-loss

ν

2
sinh ν +

(
Dq
e-loss − Dg

e-loss

)
(cosh ν − 1)

]
+

CF

CA

π2β20
8CA

[
3ν(2ν2 − 1) sinh ν + (ν4 + 3ν2) cosh ν

]
+

CF

2

{
(Bgg + c

δ
Bgq)

2ν2 cosh ν + 8
[
2c

δ
Bgg − 2c

δ
Bq − (1− 3c2

δ
)Bgq

]
Bgq cosh ν

+ [4Bq(Bgg + (2c
δ
+ 1)Bgq)− (Bgg + c

δ
Bgq)(Bgg + 9c

δ
Bgq)] ν sinh ν+4(1− c2

δ
)B2

gqν
2 + 8

[
2c

δ
Bq − 2c

δ
Bgg + (1− 3c2

δ
)Bgq

]
Bgq

}
+

CF

CA

πβ0
2

{
(Bgg + c

δ
Bgq)ν

3 sinh ν + [2Bq − 2Bgg + (6− 8c
δ
)Bgq] ν sinh ν+2(Bq + Bgg + Bgq)ν

2 cosh ν − 4(1− c
δ
)Bgq(2 cosh ν − 2 + ν2)

}

No “long-distance effect” ⇒ simpler than kt

lnQ

ln kt,cut

lnQ

ln kt,cut

lnQ

ln kt,cut

ln kt

η

lnQ

ln kt,cut

(finite z, 1−z)

lnQ

ln kt,cut

lnQ

ln kt,cut

lnQ

ln kt,cut

lnQ

ln kt,cut

Not NNDL lnQ

ln kt,cut

Not NNDLlnQ

ln kt,cut

ln kt

η

β0 × β0lnQ

ln kt,cut

β0× hard-coll.lnQ

ln kt,cut

ln kt

η
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Lund multiplicity (2/2)

[R. Medves, A. Soto, GS,
2205.02861]

NNDL Matched to NLO

Clear effect of resummation

Clear effect compared to NDL (incl. uncert)

Several questions

LEP (ALEPH) measurement?
see. e.g. Y.Chen et al. 2111.09914

Upgrade to LHC jets?

Can it lead to an αs measurement?

NNLO? N3DL?
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Application #2: MC development
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Obvious comparisons

parton shower hadronisation

“standard” data vs. Monte Carlo comparison

Recall that different Lund regions are sensitive
to different physics:

Primary Lund-plane regions

soft-collinear

hard-collinear (large
z)

IS
R
(larg

e
Δ
)

M
PI/U

E non-pert. (small kt)

ln(1/Δ)

ln
(k

t/
G
eV
)
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Revisiting “standard” substructure observables [skip]

Equivalent to angularities/EECs:

Sβ =
∑
i∈L

Ei e
−βηi

Mβ = max
i∈L

Ei e
−βηi

✓ subjets allows for the use of “max”
✓ sum ̸=max at NLL
✓ can be defined in pp -0.1 0.0

M = 1

S = 1

Thrust
M = 1

2

S = 1
2

FC1
2

M = 0

S = 0

FC1

BW

BT

y23

Dipole
Pythia8

-0.1 0.0

PanLocal
( = 1

2 ,dip.)

-0.1 0.0

PanLocal
( = 1

2 ,ant.)

-0.1 0.0

PanGlobal
( = 0)

-0.1 0.0
lim

s 0 [ PS / NLL 1 ]  for = 1
2

PanGlobal
( = 1

2 )

s
{0

.0
02

5,
0.

00
5,

0.
01

},
 sy

st
=0

.1
%

, 
=

18

NLL accuracy tests  NODS method

[M.Dasgupta,F.Dreyer,K.Hamilton,P.Monni,G.Salam,GS,2002.11114]

[K.Hamilton,R.Medves,G.Salam,L.Scyboz,GS,2011.10054]N-subjettiness-like: sum excluding the N largest

τβ,LundN =
∑
i∈AN

Ei e
−βηi with AN = argminX⊂L,|L\X |=N−1

✓ Could replace sum by max (likely gaining a simpler resummation structure)
✓ Could be defined on the primary plane only
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Crafted observables: example ∆Ψ12

Azimuth between 1st and 2nd prim. declust.

~n1 ~n2

∆ψ12

P1

P2

∆ψ12

~p1
~p3

~p2
~p4

~p5

2 primaries
w comensurate kt

0 /4 /2 3 /4
| 12|

0.8

1.0

1.2

1.4

1.6

1.8

M
C
/

N
LL

(
12

,k
t2

|k
t1

)

-0.6 < slogkt, 1
Q < -0.5, 0.3 < kt2

kt1
< 0.5

12, s 0
PanLocal( =0,dipole)
PanLocal( =1

2 ,dipole)
PanLocal( =1

2 ,antenna)
PanGlobal( =0)
PanGlobal( =1

2 )
Dipole(Dire v1)
Dipole(Py8)

Expected ratio of 1 at NLL

NLL failures for “standard” showers
“New” PanScales shower OK at NLL

[M.Dasgupta,F.Dreyer,K.Hamilton,P.Monni,G.Salam,GS,2002.11114]

Gregory Soyez Quarks, gluons and Lund plane(s) CERN, June 3 2022 21 / 37

https://arxiv.org/abs/2002.11114


Crafted observables: example ∆Ψ12

Azimuth between 1st and 2nd prim. declust.
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All-order γ∗ → qq̄, λ = −0.5

Sensitive to (collinear) spin
“New” PanScales shower have spin at NLL

agrees w EEEC from 2011.02492 (EEEC less sensitive)

[A.Karlberg,G.Salam,L.Scyboz,R.Verheyen,2103.16526]
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Crafted observables: example ∆Ψ12

Azimuth between 1st and 2nd prim. declust.
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Sensitive to (soft) spin
“New” PanScales shower have spin at NLL

first all-order result

[K.Hamilton,A.Karlberg,G.Salam,L.Scyboz,R.Verheyen,2111.01161]
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Application #3: Boosted object tagging
(mostly illustrative)
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Tagging boosted W bosons (v. QCD jets) [1/2]

Clear potential on a simple image (also: many basic features recognised)
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Tagging boosted W bosons (v. QCD jets) [2/2]

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
W
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1/
QC

D

Pythia 8.223 simulation
signal: pp WW, background: pp jj

anti-kt R = 1 jets, pt > 2 TeV

QCD rejection v. W tagging efficiency

mMDT mass
Lund+LL
Lund+LSTM
EdgeConv using Lund kinematics
ParticleNet [GQ19]

successful W tagging rate

Q
C
D

re
je
ct
io
n
fa
ct
or

[F.Dreyer,H.Qu
2012.08526]

[graph network using 4-vector(more complex)]

Graph Net trained on full Lund tree

Deep-learning (LSTM) using Lund primaries

Likelihood ratio based on prim. Lund images

Historical mMDT/SoftDrop

Main messages

Large gain from info in the primary plane

Yet another gain from the full Lund tree
non-negligible amount of info for kt ≲ 1 GeV

non-negligible differences between generators or
parton/hadron level

Gregory Soyez Quarks, gluons and Lund plane(s) CERN, June 3 2022 24 / 37

https://arxiv.org/abs/2012.08526


Tagging boosted W bosons (v. QCD jets) [2/2]
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[F.Dreyer,H.Qu
2012.08526]

successful top tagging rate
Q
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[F.Dreyer,H.Qu
2012.08526]

✓
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Take-home message #3

Lund plane variables helpful in all areas of jet substructure

Variables to test/develop Monte-Carlo generators

New calculations in (p)QCD and comparisons to data

Efficient input to Deep-Learning boosted taggers

Possibilities to craft new observables for a specific purpose
(Interesting also in heavy-ion collisions)
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Quark/gluon discrimination

Goal: using the Lund declustering info (primary or full-tree)
can we say if a jet is quark- or gluon-initiated?
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Quark v. gluon jets: 0. basic considerations

What is a Quark Jet?

From lunch/dinner discussions

A quark parton


A Born-level quark parton


The initiating quark parton in a final state shower


An eikonal line with baryon number 1/3 
and carrying triplet color charge


A quark operator appearing in a hard matrix element 
in the context of a factorization theorem


A parton-level jet object that has been quark-tagged 
using a soft-safe flavored jet algorithm (automatically 
collinear safe if you sum constituent flavors)


A phase space region (as defined by an unambiguous 
hadronic fiducial cross section measurement) that yields 
an enriched sample of quarks (as interpreted by some 
suitable, though fundamentally ambiguous, criterion)

Ill-Defined

Well-Defined What we mean

What people 

sometimes 

think we mean

Quark 

as adjective

Quark 

as noun

pedestrian summary

there is no such thing as a
“quark” or a “gluon” jet

well-defined: tagging process
A (“quark-enriched”(∗)) against
process B (“gluon-enriched”(∗))

(∗) ambiguous

Our approach(es)

discuss process-independent
aspects (at least analytically)

probe changes for different
processes
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Quark v. gluon jets: I. approach

Optimal discriminant (Neyman–Pearson lemma)

Lprim,tree =
pg (Lprim,tree)

pq(Lprim,tree)
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Quark v. gluon jets: I. approach

Optimal discriminant (Neyman–Pearson lemma)

Lprim,tree =
pg (Lprim,tree)

pq(Lprim,tree)

Approach #1

Deep-learn Lprim,tree

LSTM with Lprim or Lund-Net with Ltree
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Quark v. gluon jets: I. approach

Optimal discriminant (Neyman–Pearson lemma)

Lprim,tree =
pg (Lprim,tree)

pq(Lprim,tree)

Approach #1

Deep-learn Lprim,tree

LSTM with Lprim or Lund-Net with Ltree

Approach #2

Use pQCD to calculate pq,g (Lprim,tree)

Consider kt ≥ kt,cut to stay perturbative

Resum logs to all orders in αs , up to double logs

▶ Each primary radiation comes with a factor 2αs (kt)CR

π

▶ Each subsidiary radiation comes with a factor 2αs (kt)CA

π

Probabilities: pq,g =
∏

i∈prim
2αs (kti )CF,A

π

∏
i∈others

2αs (kti )CA

π (up to a negligible Sudakov)

The ratio largely cancels: Lprim,tree =
(
CF
CA

)nprim
[C.Frye,A.Larkoski,J.Thaler,1704.06266]

The optimal discriminant is the primary multiplicity i.e. the Iterated SoftDrop multiplicity
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Quark v. gluon jets: I. approach

Optimal discriminant (Neyman–Pearson lemma)

Lprim,tree =
pg (Lprim,tree)

pq(Lprim,tree)

Approach #1

Deep-learn Lprim,tree

LSTM with Lprim or Lund-Net with Ltree

Approach #2

Use pQCD to calculate pq,g (Lprim,tree)

Consider kt ≥ kt,cut to stay perturbative

Resum logs to all orders in αs , up to single logs
▶ single logs from “DGLAP” collinear splittings

Pq(Lparent) = Sq(∆prev,∆)
[
P̃qq(z)pq(Lhard)pg (Lsoft) + P̃gq(z)pg (Lhard)pq(Lsoft)

]
pg (Lparent) = Sg (∆prev,∆)

[
P̃gg (z)pg (Lhard)pg (Lsoft) + P̃qg (z)pq(Lhard)pq(Lsoft)

]
▶ some single logs for emissions at commensurate angles

Note: all-order not tractable analytically; we resum any pair of commensurate-angle emissions

▶ running coupling (in the Sudakov)
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Quark v. gluon jets: II. ML validation

our analytic discriminant is exact/optimal in the dominant collinear limit θ1 ≫ θ2 ≫ · · · ≫ θn
⇒ ML expected to give the same performance
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ROC: LSTM v. expected likelihood

ROC curves agree

Microjet
≡

exact
pure-collinear

[M.Dasgupta,F.Dreyer
G.P.Salam,G.Soyez,

1411.5182]
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AUC: network convergence

Converges for large-enough networks
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our analytic discriminant is exact/optimal in the dominant collinear limit θ1 ≫ θ2 ≫ · · · ≫ θn
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Quark v. gluon jets: III. performance

pp → Zq v. pp → Zg (pt ∼ 500 GeV, R = 0.4)
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ROC: Pythia sample

clear performance ordering:

Lund+ML > Lund analytic > ISD
tree > prim

larger gains with no kt cut

Interesting questions:
▶ Analytic approach to NP?
▶ Apply analytics to other systems (W /Z/H, top)
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Quark v. gluon jets: III. performance

pp → Zq v. pp → Zg (pt ∼ 500 GeV, R = 0.4)
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ROC: Pythia sample

clear performance ordering:

Lund+ML > Lund analytic > ISD
tree > prim

larger gains with no kt cut

Interesting questions:
▶ Analytic approach to NP?
▶ Apply analytics to other systems (W /Z/H, top)
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Resilience (1/2)

Question: is your tagger resilient to uncontrolled effects?

One has:

a reference sample A
(e.g. network trained+tested w Pythia)

an alternate sample B
(e.g. network tested w Herwig)

We want (for a given working point)

ζ =

[(
∆εq
⟨εq⟩

)2

+

(
∆εg
⟨εg ⟩

)2
]−1

as small as possible.

(would probably deserve a study on its own)

εq

εg

A B
ζ−1

A B
ζ−1

Less performant
More resilient
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Resilience (1/2)

Question: is your tagger resilient to uncontrolled effects?
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Resilience (2/2)
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√
εg

working point: kt,cut = 1 GeV, optimal performance (reference: Pythia, hadron+MPI, Z+jet)

3 studies: sample (Z+jet v. dijets), NP effects (hadron v. parton), generator (Pythia v. Herwig)

performance: same ordering as before

resilience: network-based < Lund analytics ≲ nSD
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for each curve: “standard” trade-off between performance and resilience

Overall: better behaviour for the new Lund-based approaches:

At “large” resilience: better envelope for the Lund analytic approaches
At “small” resilience: ML performance gain pays off
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Comparison to other approaches: ML-based

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q

1.0

1.5

2.0

2.5

3.0

3.5

4.0

sig
ni

fic
an

ce
, 

q/
g

Pythia8, Z+jet
500 < pt < 550 GeV, R = 0.4

no kt cut

Significance: Lund models v. others
Lund-Net PFN EFN

Approaches:

Lund-Net (full tree)

Particle-flow network

Energy-flow network

Dashed: with PDG-ID

Particle-Net

▶ small performance gain for Lund

▶ differences might come from details

▶ with PDG-ID: PFN∼Lund≳PNet
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Comparison to other approaches: analytics/shapes
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▶ clear gain from our analytic approach

▶ Different behaviour for shapes

▶ Lund (expectably) better for same info
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Towards full-event tagging

e+e− → Z → qq̄ v. e+e− → H → gg (
√
s = 125 GeV, no ISR)
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Pythia8.306, s = 125 GeV

ROC curve: Z qq v. H gg

tag each  hemispheres

observed performance:

tagging both hemispheres
i.e. both jets should be tagged

full event clearly worse that (jet)2

double Lund-Net tag

Lund-Net for the full event
Another performance gain

Open questions/work in progress

How does the analytic do?
e.g. what gain from full-event tagging?

Applications to other cases (e.g. at the LHC)?
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Conclusions

1 Lund diagrams have helped thinking about resummation and MCs
Now they can be reconstructed in practice

They provide a view of a jet/event which mimics angular ordering
They provide a separation between different physical effects

2 Broad spectrum of applications:

Wide range of possible (p)QCD calculations
Main limitation: (non-global) clustering logs; can we apply grooming-like techniques?

Large scope for crafting new observables ((p)QCD calculations, MC devel/validation)
More connections to deep learning, heavy-ion collisions, ...

3 Quark-gluon tagging:

analytic: single-log gives a systematic improvement over ISD multiplicity
deep-learning: Lund-Net shows very good performance (also for W and top tagging)
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Backup
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Promoting to a practical tool

Construct the Lund tree in practice: use the Cambridge(/Aachen) algorithm
Main idea: Cambridge(/Aachen) preserves angular ordering

e+e− collisions

1 Cluster with Cambridge (dij = 2(1−cos θij ))

2 For each (de)-clustering j ← j1j2:
η = − ln θ12/2
kt = min(E1,E2) sin θ12
z = min(E1,E2)

E1+E2

ψ ≡ some azimuth,...

Jet in pp

1 Cluster with Cambridge/Aachen (dij = ∆Rij )

2 For each (de)-clustering j ← j1j2:
η = − ln∆R12

kt = min(pt1, pt2)∆R12

z = min(pt1,pt2)
pt1+pt2

ψ ≡ some azimuth,...

Primary Lund plane

Starting from the jet, de-cluster following the “hard branch” (largest E or pt)

Gregory Soyez Quarks, gluons and Lund plane(s) CERN, June 3 2022 2 / 3



Quark v. gluon jets: III. performance v. others

pp → Zq v. pp → Zg (pt ∼ 500 GeV, R = 0.4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q

1.0

1.5

2.0

2.5

3.0

3.5

4.0

sig
ni

fic
an

ce
, 

q/
g

Pythia8, Z+jet
500 < pt < 550 GeV
R = 0.4

kt > 1 GeV

Significance: Lund models v. others
nSD
Lund NLL
EEC0.5(allkt)
EEC0.5(kt > 1 GeV)

1(allkt)
1(kt > 1 GeV)

Analytic approach shows gains for kt > 1 GeV
(shapes improve at small εq by adding smaller kt)

ML performance on par with PFN, slightly better
than Particle-Net
(treatment of PDG-ID could maybe be improved)

Gregory Soyez Quarks, gluons and Lund plane(s) CERN, June 3 2022 3 / 3



Quark v. gluon jets: III. performance v. others

pp → Zq v. pp → Zg (pt ∼ 500 GeV, R = 0.4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q

1.0

1.5

2.0

2.5

3.0

3.5

4.0

sig
ni

fic
an

ce
, 

q/
g

Pythia8, Z+jet
500 < pt < 550 GeV, R = 0.4

no kt cut

Significance: Lund models v. others
Lund-Net
Lund-Net(+ID)

PFN
PFN-ID

EFN
Particle-Net

Analytic approach shows gains for kt > 1 GeV
(shapes improve at small εq by adding smaller kt)

ML performance on par with PFN, slightly better
than Particle-Net
(treatment of PDG-ID could maybe be improved)

Gregory Soyez Quarks, gluons and Lund plane(s) CERN, June 3 2022 3 / 3


	Appendix

