Triangle singularity in light meson sector

by Mikhail Mikhasenko, ORIGINS Excellence Cluster, Munich, Germany

 a_1 04.04 at 11h15, Cubotron, 6th floor

Triangle singularity at the light-meson sector

Mikhail Mikhasenko COMPASS Collaboration, LHCb Collaboration

Excellence Cluster ORIGINS, Munich, Germany Joint Physics Analysis Center

July 4th, 2022

One of the most beautiful and elegant(!) theory in physics

One of the most beautiful and elegant(!) theory in physics

 $\mathcal{L}_{SM} = -\frac{1}{2} \partial_{\nu} g^a_{\nu} \partial_{\nu} g^a_{\nu} - g_s f^{abc} \partial_{\mu} g^a_{\nu} g^b_{\nu} g^c_{\nu} - \frac{1}{4} g^2_s f^{abc} f^{adc} g^b_{\nu} g^c_{\nu} g^d_{\nu} g^c_{\nu} - \partial_{\nu} W^+_{\nu} \partial_{\nu} W^-_{\nu} - \frac{1}{4} g^2_s f^{abc} f^{adc} g^b_{\nu} g^c_{\nu} g^d_{\nu} g^c_{\nu} - \frac{1}{2} g^2_s f^{abc} f^{adc} g^b_{\nu} g^c_{\nu} g^d_{\nu} g^c_{\nu} - \frac{1}{2} g^2_s f^{abc} f^{adc} g^b_{\nu} g^c_{\nu} g^d_{\nu} g^c_{\nu} - \frac{1}{2} g^2_s f^{abc} f^{adc} g^b_{\nu} g^c_{\nu} g^d_{\nu} g^c_{\nu} - \frac{1}{2} g^2_s f^{abc} f^{adc} g^b_{\nu} g^c_{\nu} g^d_{\nu} g^c_{\nu} - \frac{1}{2} g^2_s f^{abc} f^{adc} g^b_{\nu} g^c_{\nu} g^d_{\nu} g^c_{\nu} - \frac{1}{2} g^2_s f^{abc} f^{adc} g^b_{\nu} g^c_{\nu} g^d_{\nu} g^c_{\nu} - \frac{1}{2} g^2_s f^{abc} f^{adc} g^b_{\nu} g^c_{\nu} g^d_{\nu} g^c_{\nu} - \frac{1}{2} g^2_s f^{abc} f^{adc} g^b_{\nu} g^c_{\nu} g^d_{\nu} g^c_{\nu} - \frac{1}{2} g^2_s f^{abc} f^{adc} g^b_{\nu} g^c_{\nu} g^d_{\nu} g^c_{\nu} - \frac{1}{2} g^2_s f^{abc} f^{adc} g^b_{\nu} g^c_{\nu} g^d_{\nu} g^c_{\nu} - \frac{1}{2} g^2_s f^{abc} f^{adc} g^b_{\nu} g^c_{\nu} g^d_{\nu} g^c_{\nu} - \frac{1}{2} g^2_s f^{abc} f^{adc} g^b_{\nu} g^c_{\nu} g^d_{\nu} g^c_{\nu} g^d_{\nu} g^c_{\nu} g^d_{\nu} g^c_{\nu} g^d_{\nu} g^d_{\nu} g^c_{\nu} g^d_{\nu} g$ $M^{2}W_{\mu}^{+}W_{\mu}^{-} - \frac{1}{2}\partial_{\nu}Z_{\mu}^{0}\partial_{\nu}Z_{\mu}^{0} - \frac{1}{2m}M^{2}Z_{\mu}^{0}Z_{\mu}^{0} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - igc_{w}(\partial_{\nu}Z_{\mu}^{0})W_{\mu}^{+}W_{\nu}^{-} - igc_{w}(\partial_{\nu}Z_{\mu}^{0})W_{\mu}^{+}W_{\mu}^{-} - igc_{w}(\partial_{\nu}Z_{\mu}^{0})W_{\mu}^{+}W_{\mu}^{-} - igc_{w}(\partial_{\mu}Z_{\mu}^{0})W_{\mu}^{+}W_{\mu}^{-} - igc_{w}(\partial_{\mu}Z_{\mu}^{0})W_{\mu}^{-} - igc_{w}(\partial_{\mu}Z_{\mu}^{0})W_{\mu}^{-} - igc_{w}(\partial_{\mu}Z_{\mu}^{0})W_{\mu}^{-} - igc_{w}(\partial_{\mu}Z_{\mu}^{0})W_{\mu}^{-} - igc_{w}(\partial_{\mu}Z_{$ $W_{\nu}^{+}W_{\nu}^{-}) - Z_{\nu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\nu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\nu}^{+}) + Z_{\nu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\nu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\nu}^{+}))$ $igs_{\mu}(\partial_{\nu}A_{\mu}(W^{+}_{\mu}W^{-}_{\nu}-W^{+}_{\nu}W^{-}_{\nu}) - A_{\mu}(W^{+}_{\nu}\partial_{\nu}W^{-}_{\nu}-W^{-}_{\nu}\partial_{\nu}W^{+}_{\nu}) + A_{\mu}(W^{+}_{\nu}\partial_{\nu}W^{-}_{\nu}-W^{-}_{\nu}\partial_{\nu}W^{-}_{\nu}) + A_{\mu}(W^{+}_{\nu}\partial_{\nu}W^{-}_{\nu}-W^{-}_{\nu}) + A_{\mu}(W^{+}_{\nu}\partial_{\nu}W^{-}_{\nu}) +$ $W_{-}^{-}\partial_{\nu}W_{+}^{+})) - \frac{1}{2}q^{2}W_{+}W_{-}W_{+}^{+}W_{-}^{-} + \frac{1}{2}q^{2}W_{+}W_{-}W_{+}^{+}W_{-}^{-} + q^{2}c_{\omega}^{2}(Z_{0}^{0}W_{+}+Z_{0}^{0}W_{-}^{0} - Q_{0}^{0}W_{+}^{0}))$ $Z_{\mu}^{0}Z_{\nu}^{0}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{\nu}^{2}(A_{\mu}W_{\nu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{\nu}c_{\nu}(A_{\mu}Z_{\nu}^{0}(W_{\nu}^{+}W_{\nu}^{-} - A_{\nu}A_{\nu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{\nu}c_{\nu}(A_{\mu}Z_{\nu}^{0}(W_{\nu}^{+}W_{\nu}^{-} - A_{\nu}A_{\nu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{\nu}c_{\nu}(A_{\mu}Z_{\nu}^{0}(W_{\nu}^{+}W_{\nu}^{-} - A_{\nu}A_{\nu}A_{\nu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{\nu}c_{\nu}(A_{\mu}Z_{\nu}^{0}(W_{\nu}^{+}W_{\nu}^{-} - A_{\nu}A_{\nu}A_{\nu}W_{\nu}^{-}) + g^{2}s_{\nu}c_{\nu}(A_{\mu}Z_{\nu}^{0}(W_{\nu}^{-})) + g^{2}s_{\nu}c_{\nu}(A_{\mu}Z_{$ $W^+_+W^-_-$) - $2A_{\nu}Z^0_+W^+_-$) - $\frac{1}{2}\partial_{\nu}H\partial_{\nu}H - 2M^2\alpha_{\lambda}H^2 - \partial_{\nu}\phi^+\partial_{\nu}\phi^- - \frac{1}{2}\partial_{\nu}\phi^0\partial_{\nu}\phi^0 \beta_h \left(\frac{2M^2}{r^2} + \frac{2M}{r}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-) \right) + \frac{2M^4}{r^2}\alpha_h$ $g \alpha_h M (H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^-) \frac{1}{2}g^2\alpha_h (H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2)$ $gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{d^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H \frac{1}{2}iq\left(W^{+}_{u}(\phi^{0}\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\nu}\phi^{0})-W^{-}_{u}(\phi^{0}\partial_{\nu}\phi^{+}-\phi^{+}\partial_{\mu}\phi^{0})\right)+$ $\frac{1}{2}q\left(W^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)+W^{-}(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H)\right)+\frac{1}{2}q\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}q\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}q\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}q\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}q\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}q\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}q\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}q\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}q\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}q\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}q\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}q\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}q\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}q\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}q\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}-\phi^{0})+\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}-\phi^{0})+\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}-\phi^{0})+\frac{1}{2}\right)\right)}\right)$ $M\left(\frac{1}{c}Z_{\mu}^{0}\partial_{\mu}\phi^{0}+W_{\mu}^{+}\partial_{\mu}\phi^{-}+W_{\mu}^{-}\partial_{\mu}\phi^{+}\right)-ig\frac{s_{\mu}^{2}}{c}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})$ $W_{\mu}^{-}\phi^{+}) - ig \frac{1-2c_{\mu}^{2}}{2c_{\mu}}Z_{\mu}^{0}(\phi^{+}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) + igs_{w}A_{\mu}(\phi^{+}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) \frac{1}{4}g^2W^+_{\mu}W^-_{\mu}(H^2 + (\phi^0)^2 + 2\phi^+\phi^-) - \frac{1}{8}g^2\frac{1}{c^2}Z^0_{\mu}Z^0_{\mu}(H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2\phi^+\phi^-) \frac{1}{2}g^2 \frac{s_u^2}{2} Z_u^0 \phi^0(W_u^+ \phi^- + W_u^- \phi^+) - \frac{1}{2}ig^2 \frac{s_u^2}{2} Z_u^0 H(W_u^+ \phi^- - W_u^- \phi^+) + \frac{1}{2}g^2 s_w A_u \phi^0(W_u^+ \phi^- + W_u^- \phi^+)$ $W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{\mu}A_{\mu}H(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+}) - g^{2}\frac{\pi}{2}(2c_{\mu}^{2}-1)Z_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-} - W_{\mu}^{-}\phi^{+})$ $g^2 s^2_w A_u A_u \phi^+ \phi^- + \frac{1}{2} i g_s \lambda^a_{ii} (\bar{q}^\sigma \gamma^\mu q^\sigma_i) g^a_u - \bar{e}^\lambda (\gamma \partial + m^\lambda_e) \bar{e}^\lambda - \bar{\nu}^\lambda (\gamma \partial + m^\lambda_u) \nu^\lambda - \bar{u}^\lambda_i (\gamma \partial + m^\lambda_u) \bar{e}^\lambda_i$ $m_{\nu}^{\lambda}u_{i}^{\lambda} - \bar{d}_{i}^{\lambda}(\gamma\partial + m_{d}^{\lambda})d_{i}^{\lambda} + igs_{w}A_{\mu}\left(-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{2}(\bar{u}_{i}^{\lambda}\gamma^{\mu}u_{i}^{\lambda}) - \frac{1}{2}(\bar{d}_{i}^{\lambda}\gamma^{\mu}d_{i}^{\lambda})\right) +$ $\frac{ig}{i\pi}Z_{\nu}^{0}\{(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})+(\bar{e}^{\lambda}\gamma^{\mu}(4s_{\nu}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{d}_{\lambda}^{\lambda}\gamma^{\mu}(\frac{4}{2}s_{\nu}^{2}-1-\gamma^{5})d_{\lambda}^{\lambda})+$ $(\bar{u}_{i}^{\lambda}\gamma^{\mu}(1-\frac{8}{3}s_{w}^{2}+\gamma^{5})u_{i}^{\lambda})\}+\frac{ig}{2\sqrt{2}}W_{\mu}^{+}((\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})U^{lep}_{\lambda\mu}e^{\kappa})+(\bar{u}_{i}^{\lambda}\gamma^{\mu}(1+\gamma^{5})C_{\lambda\mu}d_{i}^{\kappa}))+$ $\frac{ig}{2\sqrt{\sigma}}W^{-}_{\mu}\left((\bar{e}^{\kappa}U^{lep}_{\kappa\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})+(\bar{d}^{\kappa}_{i}C^{\dagger}_{\kappa\lambda}\gamma^{\mu}(1+\gamma^{5})u^{\lambda}_{i})\right)+$ $\frac{ig}{2M\sqrt{2}}\phi^{+}\left(-m_{e}^{\kappa}(\bar{\nu}^{\lambda}U^{lep}{}_{\lambda\kappa}(1-\gamma^{5})e^{\kappa})+m_{\nu}^{\lambda}(\bar{\nu}^{\lambda}U^{lep}{}_{\lambda\kappa}(1+\gamma^{5})e^{\kappa})+\right.$ $\frac{ig}{2M\sqrt{\beta}}\phi^{-}\left(m_{e}^{\lambda}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}(1+\gamma^{5})\nu^{\kappa})-m_{\nu}^{\kappa}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}(1-\gamma^{5})\nu^{\kappa}\right)-\frac{g}{2}\frac{m_{e}^{\lambda}}{M}H(\bar{\nu}^{\lambda}\nu^{\lambda}) \frac{a}{2}\frac{m_{\lambda}^{\lambda}}{M}H(\bar{e}^{\lambda}e^{\lambda}) + \frac{ia}{2}\frac{m_{\lambda}^{\lambda}}{M}\phi^{0}(\bar{\nu}^{\lambda}\gamma^{5}\nu^{\lambda}) - \frac{ia}{2}\frac{m_{\lambda}^{\lambda}}{M}\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda}) - \frac{1}{4}\bar{\nu}_{\lambda}\frac{M_{\lambda \kappa}^{R}}{M_{\lambda \kappa}^{R}}(1-\gamma_{5})\hat{\nu}_{\kappa} \frac{1}{4}\overline{\hat{\nu}_{\lambda}}\frac{M_{\lambda\kappa}^{R}(1-\gamma_{5})\hat{\nu}_{\kappa}}{M_{\lambda\kappa}^{R}(1-\gamma_{5})\hat{\nu}_{\kappa}} + \frac{ig}{2M\sqrt{2}}\phi^{+}\left(-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^$ $\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa})-m_{u}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^{5})u_{j}^{\kappa}\right)-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{i}^{\lambda}u_{i}^{\lambda}) \frac{g}{2}\frac{m_A^2}{M}H(\bar{d}_i^\lambda d_i^\lambda) + \frac{ig}{2}\frac{m_A^\lambda}{M}\phi^0(\bar{u}_i^\lambda \gamma^5 u_i^\lambda) - \frac{ig}{2}\frac{m_A^\lambda}{M}\phi^0(\bar{d}_i^\lambda \gamma^5 d_i^\lambda) + \bar{G}^a\partial^2 G^a + g_s f^{abc}\partial_a \bar{G}^a G^b g_a^c +$ $\bar{X}^{+}(\partial^{2} - M^{2})X^{+} + \bar{X}^{-}(\partial^{2} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - \frac{M^{2}}{2})X^{0} + \bar{Y}\partial^{2}Y + iqc_{m}W^{+}(\partial_{n}\bar{X}^{0}X^{-} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - M^{0})X^{-} + \bar{X}^{0}(\partial^{2} - M^{0})X^{-} + \bar{X}^{0}(\partial^{2} - M^{0})X$ $\partial_{\omega}\bar{X}^{+}X^{0}$ + $ias_{\omega}W^{+}(\partial_{\omega}\bar{Y}X^{-} - \partial_{\omega}\bar{X}^{+}\bar{Y})$ + $iac_{\omega}W^{-}(\partial_{\omega}\bar{X}^{-}X^{0} - \partial_{\omega}\bar{X}^{+}\bar{Y})$ $\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{Y}X^{+})+igc_{w}Z_{\mu}^{0}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{Y}X^{+}))$ $\partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM\left(\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c^{2}}\bar{X}^{0}X^{0}H\right) + \frac{1-2c_{\nu}^{2}}{2c_{\nu}}igM\left(\bar{X}^{+}X^{0}\phi^{+} - \bar{X}^{-}X^{0}\phi^{-}\right) +$ $\frac{1}{2}iqM(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+iqMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+$ $\frac{1}{2}igM(\bar{X}^+X^+\phi^0-\bar{X}^-X^-\phi^0)$.

SM: Electroweak-Higgs & QCD

One of the most beautiful and elegant(!) theory in physics

 $\begin{array}{l} \mathcal{L}_{SM} = -\frac{1}{2} \partial_{\nu} g^{\mu}_{\mu} \partial_{\nu} g^{\mu}_{\mu} - g_{\sigma} f^{abc} \partial_{\mu} g^{\mu}_{\sigma} g^{c}_{\mu} g^{c}_{\nu} - \frac{1}{4} g^{2}_{\sigma} f^{abc} \beta^{abc}_{\mu} g^{b}_{\nu} g^{c}_{\mu} g^{c}_{\mu} - \partial_{\nu} W^{\mu}_{\mu} \partial_{\nu} W^{-}_{\mu} - M^{2} W^{\mu}_{\mu} \partial_{\nu} Z^{0}_{\mu} - \frac{1}{2} \partial_{\mu} A^{\mu}_{\nu} \partial_{\mu} A^{\mu}_{\nu} - \frac{1}{2} g^{\mu}_{\nu} (\partial_{\nu} Z^{\mu}_{\mu} W^{\mu}_{\mu} \partial_{\nu} W^{-}_{\mu} - M^{2} G^{\mu}_{\nu} Z^{\mu}_{\nu} \partial_{\nu} Z^{\mu}_{\mu} - \frac{1}{2} \partial_{\mu} A^{\mu}_{\nu} \partial_{\mu} A^{\mu}_{\nu} - \frac{1}{2} g^{\mu}_{\nu} (\partial_{\nu} Z^{\mu}_{\mu} W^{\mu}_{\mu} \partial_{\nu} W^{-}_{\mu} - M^{2} G^{\mu}_{\nu} \partial_{\nu} Z^{\mu}_{\mu} - \frac{1}{2} \partial_{\nu} Z^{\mu}_{\mu} \partial_{\nu} Z^{\mu}_{\mu} - \frac{1}{2} \partial_{\nu} Z^{\mu}_{\mu} \partial_{\nu} Z^{\mu}_{\mu} - \frac{1}{2} \partial_{\nu} Z^{\mu}_{\mu} \partial_{\nu} Z^{\mu}_{\mu} - \frac{1}{2} \partial_{\mu} Z^{\mu}_{\mu} \partial_{\nu} Z^{\mu}_{\mu} - \frac{1}{2} \partial_{\mu} Z^{\mu}_{\mu} \partial_{\nu} Z^{\mu}_{\mu} - \frac{1}{2} \partial_{\nu} Z^{\mu}_{\mu} \partial_{\nu} Z^{\mu}_{\mu} - \frac{1}{2} \partial_{\mu} Z^{\mu}_{\mu} \partial_{\mu} Z^{\mu}_{\mu} \partial_{\mu} Z^{\mu}_{\mu} - \frac{1}{2} \partial_{\mu} Z^{\mu}_{\mu} \partial_{\mu} Z^{\mu}_{\mu} - \frac{1}{2} \partial_{\mu} Z^{\mu}_{\mu} \partial_{\mu} Z^{\mu}_{\mu} - \frac{1}{2} \partial_{\mu} Z^{\mu}_{\mu} \partial_{\mu} Z^{\mu}_{\mu} \partial_{\mu} Z^{\mu}_{\mu} - \frac{1}{2} \partial_{\mu} Z^{\mu}_{\mu} \partial_{\mu} Z^{\mu}_{\mu} - \frac{1}{2} \partial_{\mu} Z^{\mu}_{\mu} \partial_{\mu} Z^{\mu}_{\mu} \partial_{\mu} Z^{\mu}_{\mu} - \frac{1}{2} \partial_{\mu} Z^{\mu}_{\mu} \partial_{\mu} Z^{\mu}_{\mu} - \frac{1}{2} \partial_{\mu} Z^{\mu}_{\mu} \partial_{\mu} Z^{\mu}_{\mu} \partial_{\mu} Z^{\mu}_{\mu} - \frac{1}{2} \partial_{\mu} Z^{\mu}_{\mu} \partial_{\mu} Z^{\mu}_{\mu} - \frac{1}{2} \partial_{\mu} Z^{\mu}_{\mu} \partial_{\mu} Z^{\mu}_{\mu} - \frac{1}{2} \partial_{\mu}$ $W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+}))$ $igs_{w}(\partial_{\nu}A_{a}(W_{\nu}^{+}W_{\nu}^{-}-W_{\nu}^{+}W_{u}^{-}) - A_{\nu}(W_{u}^{+}\partial_{\nu}W_{u}^{-}-W_{\mu}^{-}\partial_{\nu}W_{u}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{u}^{-}-W_{\mu}^{-}\partial_{\nu}W_{u}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{u}^{-}-W_{\mu}^{-}\partial_{\nu}W_{u}^{-}) + A_{\mu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{u}^{-}) + A_{\mu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{-}) + A_{\mu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-}-W_{\mu}^{-}\partial_{\mu}W_{\mu}^{-}) + A_{\mu}(W_{\mu}^{+}\partial_{\mu}W_{\mu}^{-}-W_{\mu}^{-}) + A_{\mu}(W_{\mu}^{+}\partial_{\mu}W_{\mu}^{-}) + A_{\mu}(W_{\mu}^{+}\partial_{\mu}W_{\mu}^{-}-W_{\mu}^{-}) + A_{\mu}(W_{\mu}^{+}\partial_{\mu}W_{\mu}^{-}) + A_{\mu}(W_{\mu}^{+}\partial_{\mu}W_{\mu}^{-}$ $W_{-}^{-}\partial_{\nu}W_{+}^{+})) - \frac{1}{2}q^{2}W_{+}W_{-}W_{+}^{+}W_{-}^{-} + \frac{1}{2}q^{2}W_{+}W_{-}W_{+}^{+}W_{-}^{-} + q^{2}c_{\omega}^{2}(Z_{0}^{0}W_{+}+Z_{0}^{0}W_{-}^{0} - Q_{0}^{0}W_{+}^{0}))$ $Z_{\mu}^{0}Z_{\nu}^{0}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{\nu}^{2}(A_{\mu}W_{\nu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{\nu}c_{\nu}(A_{\mu}Z_{\nu}^{0}(W_{\nu}^{+}W_{\nu}^{-} - A_{\nu}A_{\nu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{\nu}c_{\nu}(A_{\mu}Z_{\nu}^{0}(W_{\nu}^{+}W_{\nu}^{-} - A_{\nu}A_{\nu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{\nu}c_{\nu}(A_{\mu}Z_{\nu}^{0}(W_{\nu}^{+}W_{\nu}^{-} - A_{\nu}A_{\nu}A_{\nu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{\nu}c_{\nu}(A_{\mu}Z_{\nu}^{0}(W_{\nu}^{+}W_{\nu}^{-} - A_{\nu}A_{\nu}A_{\nu}W_{\nu}^{-}) + g^{2}s_{\nu}c_{\nu}(A_{\mu}Z_{\nu}^{0}(W_{\nu}^{-})) + g^{2}s_{\nu}c_{\nu}(A_{\mu}Z_{$ $W^+_+W^-_-$) - $2A_{\nu}Z^0_+W^+_-$) - $\frac{1}{2}\partial_{\nu}H\partial_{\nu}H - 2M^2\alpha_{\lambda}H^2 - \partial_{\nu}\phi^+\partial_{\nu}\phi^- - \frac{1}{2}\partial_{\nu}\phi^0\partial_{\nu}\phi^0 \beta_h \left(\frac{2M^2}{r^2} + \frac{2M}{r}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-) \right) + \frac{2M^4}{r^2}\alpha_h$ $g \alpha_h M (H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^-) \frac{1}{2}g^2\alpha_h (H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2)$ $gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{d^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H \frac{1}{2}iq\left(W^{+}_{u}(\phi^{0}\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\nu}\phi^{0})-W^{-}_{u}(\phi^{0}\partial_{\nu}\phi^{+}-\phi^{+}\partial_{\mu}\phi^{0})\right)+$ $\frac{1}{2}q\left(W^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)+W^{-}(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H)\right)+\frac{1}{2}q\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}q\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}q\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}q\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}q\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}q\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}q\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}q\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}q\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}q\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}q\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}q\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}q\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}q\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}q\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}-\phi^{0})+\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}-\phi^{0})+\frac{1}{2}\left(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}-\phi^{0})+\frac{1}{2}\right)\right)}\right)$ $M\left(\frac{1}{c}Z_{\mu}^{0}\partial_{\mu}\phi^{0}+W_{\mu}^{+}\partial_{\mu}\phi^{-}+W_{\mu}^{-}\partial_{\mu}\phi^{+}\right)-ig\frac{s_{\mu}^{2}}{c}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})$ $W^{-}_{\mu}\phi^{+}) - ig \frac{1-2c_{\nu}^{2}}{2c_{\nu}}Z^{0}_{\mu}(\phi^{+}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) + igs_{w}A_{\mu}(\phi^{+}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) \frac{1}{4}g^2W^+_{\mu}W^-_{\mu}(H^2 + (\phi^0)^2 + 2\phi^+\phi^-) - \frac{1}{8}g^2\frac{1}{c^2}Z^0_{\mu}Z^0_{\mu}(H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2\phi^+\phi^-) \frac{1}{2}g^2 \frac{s_u^2}{2} Z_u^0 \phi^0(W_u^+ \phi^- + W_u^- \phi^+) - \frac{1}{2}ig^2 \frac{s_u^2}{2} Z_u^0 H(W_u^+ \phi^- - W_u^- \phi^+) + \frac{1}{2}g^2 s_w A_u \phi^0(W_u^+ \phi^- + W_u^- \phi^+)$ $W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{\mu}A_{\mu}H(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+}) - g^{2}\frac{\pi}{2}(2c_{\mu}^{2}-1)Z_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-} - W_{\mu}^{-}\phi^{+})$ $g^2 s^2_w A_u A_u \phi^+ \phi^- + \frac{1}{2} i g_s \lambda^a_{ii} (\bar{q}^\sigma \gamma^\mu q^\sigma_i) g^a_u - \bar{e}^\lambda (\gamma \partial + m^\lambda_e) \bar{e}^\lambda - \bar{\nu}^\lambda (\gamma \partial + m^\lambda_u) \nu^\lambda - \bar{u}^\lambda_i (\gamma \partial + m^\lambda_u) \bar{e}^\lambda_i$ $m_{\nu}^{\lambda}u_{i}^{\lambda} - \bar{d}_{i}^{\lambda}(\gamma\partial + m_{d}^{\lambda})d_{i}^{\lambda} + igs_{w}A_{\mu}\left(-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{2}(\bar{u}_{i}^{\lambda}\gamma^{\mu}u_{i}^{\lambda}) - \frac{1}{2}(\bar{d}_{i}^{\lambda}\gamma^{\mu}d_{i}^{\lambda})\right) +$ $\frac{ig}{i\pi}Z_{\nu}^{0}\{(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})+(\bar{e}^{\lambda}\gamma^{\mu}(4s_{\nu}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{d}_{\lambda}^{\lambda}\gamma^{\mu}(\frac{4}{2}s_{\nu}^{2}-1-\gamma^{5})d_{\lambda}^{\lambda})+$ $(\bar{u}_{i}^{\lambda}\gamma^{\mu}(1-\frac{8}{3}s_{w}^{2}+\gamma^{5})u_{i}^{\lambda})\}+\frac{ig}{2\sqrt{2}}W_{\mu}^{+}((\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})U^{lep}_{\lambda\mu}e^{\kappa})+(\bar{u}_{i}^{\lambda}\gamma^{\mu}(1+\gamma^{5})C_{\lambda\mu}d_{i}^{\kappa}))+$ $\frac{ig}{2\sqrt{\sigma}}W^{-}_{\mu}\left((\bar{e}^{\kappa}U^{lep}_{\kappa\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})+(\bar{d}^{\kappa}_{i}C^{\dagger}_{\kappa\lambda}\gamma^{\mu}(1+\gamma^{5})u^{\lambda}_{i})\right)+$ $\frac{ig}{2M\sqrt{2}}\phi^{+}\left(-m_{e}^{\kappa}(\bar{\nu}^{\lambda}U^{lep}{}_{\lambda\kappa}(1-\gamma^{5})e^{\kappa})+m_{\nu}^{\lambda}(\bar{\nu}^{\lambda}U^{lep}{}_{\lambda\kappa}(1+\gamma^{5})e^{\kappa})+\right.$ $\frac{ig}{2M\sqrt{\beta}}\phi^{-}\left(m_{e}^{\lambda}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}(1+\gamma^{5})\nu^{\kappa})-m_{\nu}^{\kappa}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}(1-\gamma^{5})\nu^{\kappa}\right)-\frac{g}{2}\frac{m_{e}^{\lambda}}{M}H(\bar{\nu}^{\lambda}\nu^{\lambda}) \frac{a}{2}\frac{m_{\lambda}^{\lambda}}{M}H(\bar{e}^{\lambda}e^{\lambda}) + \frac{ia}{2}\frac{m_{\lambda}^{\lambda}}{M}\phi^{0}(\bar{\nu}^{\lambda}\gamma^{5}\nu^{\lambda}) - \frac{ia}{2}\frac{m_{\lambda}^{\lambda}}{M}\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda}) - \frac{1}{4}\bar{\nu}_{\lambda}\frac{M_{\lambda \kappa}^{R}}{M_{\lambda \kappa}^{R}}(1-\gamma_{5})\hat{\nu}_{\kappa} \frac{1}{4}\overline{\nu_{\lambda}}\frac{M_{\lambda\kappa}^{R}(1-\gamma_{5})\hat{\nu}_{\kappa}}{m_{u}^{2}} + \frac{ig}{2M_{v}/2}\phi^{+}\left(-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})\right) + \frac{ig}{4}\overline{\nu_{\lambda}}\frac{M_{k}^{R}(1-\gamma_{5})}{m_{u}^{2}}\left(-\frac{ig}{2M_{v}}\right) + \frac{ig}{2M_{v}}\frac{1}{2M_{v}}\left(-\frac{ig}{2M_{v}}\right) + \frac{ig}{2M_{v}}\left(-\frac{ig}{2M_{v}}\right) + \frac{ig}{2M_{v}}\frac{1}{2M_{v}}\left(-\frac{ig}{2M_{v}}\right) + \frac{ig}{2M_{v}}\left(-\frac{ig}{2M_{v}}\right) + \frac{ig}{2M_{v}}\left(-\frac{ig}{2$ $\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa})-m_{u}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^{5})u_{j}^{\kappa}\right)-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda}) \frac{g}{2}\frac{m_A^2}{M}H(\bar{d}_i^\lambda d_i^\lambda) + \frac{ig}{2}\frac{m_A^\lambda}{M}\phi^0(\bar{u}_i^\lambda \gamma^5 u_i^\lambda) - \frac{ig}{2}\frac{m_A^\lambda}{M}\phi^0(\bar{d}_i^\lambda \gamma^5 d_i^\lambda) + \bar{G}^a\partial^2 G^a + g_s f^{abc}\partial_a \bar{G}^a G^b g_a^c +$ $\bar{X}^{+}(\partial^{2} - M^{2})X^{+} + \bar{X}^{-}(\partial^{2} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - \frac{M^{2}}{2})X^{0} + \bar{Y}\partial^{2}Y + iqc_{m}W^{+}(\partial_{n}\bar{X}^{0}X^{-} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - M^{0})X^{-} + \bar{X}^{0}(\partial^{2} - M^{0})X^{-} + \bar{X}^{0}(\partial^{2} - M^{0})X$ $\partial_{\omega}\bar{X}^{+}X^{0}$ + $ias_{\omega}W^{+}(\partial_{\omega}\bar{Y}X^{-} - \partial_{\omega}\bar{X}^{+}\bar{Y})$ + $iac_{\omega}W^{-}(\partial_{\omega}\bar{X}^{-}X^{0} - \partial_{\omega}\bar{X}^{+}\bar{Y})$ $\partial_u \bar{X}^0 X^+ + i g s_w W^- (\partial_u \bar{X}^- Y - \partial_u \bar{Y} X^+) + i g c_w Z^0 (\partial_u \bar{X}^+ X^+ - \partial_u \bar{Y} X^+)$ $\partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM\left(\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c^{2}}\bar{X}^{0}X^{0}H\right) + \frac{1-2c_{\nu}^{2}}{2c_{\nu}}igM\left(\bar{X}^{+}X^{0}\phi^{+} - \bar{X}^{-}X^{0}\phi^{-}\right) +$ $\frac{1}{2}iqM(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+iqMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+$ $\frac{1}{2}igM(\bar{X}^+X^+\phi^0-\bar{X}^-X^-\phi^0)$.

SM: Electroweak-Higgs & QCD

QCD: Self-couplings of gluons, — color confinement

One of the most beautiful and elegant(!) theory in physics

 $\begin{array}{l} \mathcal{L}_{SM} = -\frac{1}{2} \partial_{\nu} g_{\mu}^{a} \partial_{\nu} g_{\mu}^{a} - g_{s} f^{abc} \partial_{\mu} g_{\nu}^{a} g_{\mu}^{b} g_{\nu}^{c} - \frac{1}{4} g_{s}^{2} f^{abc} f^{adc} g_{\mu}^{b} g_{\nu}^{b} g_{\mu}^{d} g_{\nu}^{c} g_{\mu}^{b} g_{\nu}^{c} g_{\mu}^{b} g_{\nu}^{c} H_{\mu}^{c} W_{\mu}^{-} \partial_{\nu} W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-} - M^{2} W_{\mu}^{\mu} W_{\mu}^{-} - \frac{1}{2} \partial_{\nu} Z_{\mu}^{\mu} \partial_{\nu} Z_{\mu}^{0} - \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu} - i g g_{w} (\partial_{\nu} Z_{\mu}^{a} (W_{\mu}^{+} W_{\nu}^{-} - W_{\mu}^{-} W_{\mu}^{-}$
$$\begin{split} & W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})) - \\ & igs_{w}(\partial_{\nu}A_{\theta}(W_{u}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{u}^{-}) - A_{\nu}(W_{u}^{+}\partial_{\nu}W_{u}^{-} - W_{\mu}^{-}\partial_{\nu}W_{u}^{+}) + A_{\theta}(W_{\nu}^{+}\partial_{\nu}W_{u}^{-} - W_{\mu}^{-}\partial_{\nu}W_{u}^{+}) + \\ \end{split}$$
 $W_{-}^{-}\partial_{\nu}W_{+}^{+})) - \frac{1}{2}q^{2}W_{+}W_{-}W_{+}^{+}W_{-}^{-} + \frac{1}{2}q^{2}W_{+}W_{-}W_{+}^{+}W_{-}^{-} + q^{2}c_{\omega}^{2}(Z_{0}^{0}W_{+}+Z_{0}^{0}W_{-}^{0} - Q_{0}^{0}W_{+}^{0}))$ $Z_{\mu}^{0}Z_{\nu}^{0}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{\nu}^{2}(A_{\mu}W_{\nu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{\nu}c_{\nu}(A_{\mu}Z_{\nu}^{0}(W_{\nu}^{+}W_{\nu}^{-} - A_{\nu}A_{\nu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{\nu}c_{\nu}(A_{\mu}Z_{\nu}^{0}(W_{\nu}^{+}W_{\nu}^{-} - A_{\nu}A_{\nu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{\nu}c_{\nu}(A_{\mu}Z_{\nu}^{0}(W_{\nu}^{+}W_{\nu}^{-} - A_{\nu}A_{\nu}A_{\nu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{\nu}c_{\nu}(A_{\mu}Z_{\nu}^{0}(W_{\nu}^{+}W_{\nu}^{-} - A_{\nu}A_{\nu}A_{\nu}W_{\nu}^{-}) + g^{2}s_{\nu}c_{\nu}(A_{\mu}Z_{\nu}^{0}(W_{\nu}^{-})) + g^{2}s_{\nu}c_{\nu}(A_{\mu}Z_{$ $W^{+}_{+}W^{-}_{-}) - 2A_{-}Z^{0}_{-}W^{+}_{+}W^{-}_{-}) - \frac{1}{2}\partial_{-}H\partial_{-}H - 2M^{2}\alpha_{b}H^{2} - \partial_{-}\phi^{+}\partial_{-}\phi^{-} - \frac{1}{2}\partial_{-}\phi^{0}\partial_{-}\phi^{0} -$ $\beta_h \left(\frac{2M^2}{r^2} + \frac{2M}{r}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-) \right) + \frac{2M^4}{r^2}\alpha_h$ $g \alpha_h M (H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^-) \frac{1}{2}g^2\alpha_h (H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2)$ $gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{d^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H \frac{1}{2}iq\left(W^{+}_{u}(\phi^{0}\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\nu}\phi^{0})-W^{-}_{u}(\phi^{0}\partial_{\nu}\phi^{+}-\phi^{+}\partial_{\mu}\phi^{0})\right)+$ $\frac{1}{2}q\left(W_{+}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)+W_{-}^{-}(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H)\right)+\frac{1}{2}q\frac{1}{2}(Z_{+}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{-}^{-}(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H))$ $M\left(\frac{1}{c}Z_{\mu}^{0}\partial_{\mu}\phi^{0}+W_{\mu}^{+}\partial_{\mu}\phi^{-}+W_{\mu}^{-}\partial_{\mu}\phi^{+}\right)-ig\frac{s_{\mu}^{2}}{c}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})$ $W_{\mu}^{-}\phi^{+}) - ig \frac{1-2c_{\mu}^{2}}{2c} Z_{\mu}^{0}(\phi^{+}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) + igs_{w}A_{\mu}(\phi^{+}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) \frac{1}{4}g^2W^+_{\mu}W^-_{\mu}(H^2 + (\phi^0)^2 + 2\phi^+\phi^-) - \frac{1}{8}g^2\frac{1}{c^2}Z^0_{\mu}Z^0_{\mu}(H^2 + (\phi^0)^2 + 2(2s^2_{\omega} - 1)^2\phi^+\phi^-) \frac{1}{2}g^2 \frac{s_u^2}{2} Z_u^0 \phi^0(W_u^+ \phi^- + W_u^- \phi^+) - \frac{1}{2}ig^2 \frac{s_u^2}{2} Z_u^0 H(W_u^+ \phi^- - W_u^- \phi^+) + \frac{1}{2}g^2 s_w A_u \phi^0(W_u^+ \phi^- + W_u^- \phi^+)$ $W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{\mu}A_{\mu}H(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+}) - g^{2}\frac{\pi}{2}(2c_{\mu}^{2}-1)Z_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-} - W_{\mu}^{-}\phi^{+})$ $g^2 s^2_w A_u A_u \phi^+ \phi^- + \frac{1}{2} i g_s \lambda^a_{ii} (\bar{q}^\sigma \gamma^\mu q^\sigma_i) g^a_u - \bar{e}^\lambda (\gamma \partial + m^\lambda_e) \bar{e}^\lambda - \bar{\nu}^\lambda (\gamma \partial + m^\lambda_u) \nu^\lambda - \bar{u}^\lambda_i (\gamma \partial + m^\lambda_u) \bar{e}^\lambda_i$ $m_{\nu}^{\lambda}u_{i}^{\lambda} - \bar{d}_{i}^{\lambda}(\gamma\partial + m_{d}^{\lambda})d_{i}^{\lambda} + igs_{w}A_{\mu}\left(-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{2}(\bar{u}_{i}^{\lambda}\gamma^{\mu}u_{i}^{\lambda}) - \frac{1}{2}(\bar{d}_{i}^{\lambda}\gamma^{\mu}d_{i}^{\lambda})\right) +$ $\frac{ig}{i\pi}Z_{\nu}^{0}\{(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})+(\bar{e}^{\lambda}\gamma^{\mu}(4s_{\nu}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{d}_{\lambda}^{\lambda}\gamma^{\mu}(\frac{4}{2}s_{\nu}^{2}-1-\gamma^{5})d_{\lambda}^{\lambda})+$ $(\bar{u}_{i}^{\lambda}\gamma^{\mu}(1-\frac{8}{3}s_{w}^{2}+\gamma^{5})u_{i}^{\lambda})\}+\frac{ig}{2\sqrt{2}}W_{\mu}^{+}((\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})U^{lep}_{\lambda\mu}e^{\kappa})+(\bar{u}_{i}^{\lambda}\gamma^{\mu}(1+\gamma^{5})C_{\lambda\mu}d_{i}^{\kappa}))+$ $\frac{ig}{2\sqrt{\sigma}}W^{-}_{\mu}\left((\bar{e}^{\kappa}U^{lep^{\dagger}}_{\kappa\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})+(\bar{d}^{\kappa}_{i}C^{\dagger}_{\kappa\lambda}\gamma^{\mu}(1+\gamma^{5})u^{\lambda}_{i})\right)+$ $\frac{ig}{2M/2}\phi^{+}\left(-m_{e}^{\kappa}(\bar{\nu}^{\lambda}U^{lep}{}_{\lambda\kappa}(1-\gamma^{5})e^{\kappa})+m_{\nu}^{\lambda}(\bar{\nu}^{\lambda}U^{lep}{}_{\lambda\kappa}(1+\gamma^{5})e^{\kappa}\right)+$ $\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{e}^{\lambda}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}^{\dagger}(1+\gamma^{5})\nu^{\kappa})-m_{\nu}^{\kappa}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}^{\dagger}(1-\gamma^{5})\nu^{\kappa}\right)-\frac{g}{2}\frac{m_{e}^{\lambda}}{M}H(\bar{\nu}^{\lambda}\nu^{\lambda}) \frac{a}{2}\frac{m_{\lambda}^{\lambda}}{M}H(\bar{e}^{\lambda}e^{\lambda}) + \frac{ia}{2}\frac{m_{\lambda}^{\lambda}}{M}\phi^{0}(\bar{\nu}^{\lambda}\gamma^{5}\nu^{\lambda}) - \frac{ia}{2}\frac{m_{\lambda}^{\lambda}}{M}\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda}) - \frac{1}{4}\bar{\nu}_{\lambda}\frac{M_{\lambda \kappa}^{R}}{M_{\lambda \kappa}^{R}}(1-\gamma_{5})\hat{\nu}_{\kappa} \frac{1}{4}\overline{\nu_{\lambda}}\frac{M_{\lambda\kappa}^{R}(1-\gamma_{5})\hat{\nu}_{\kappa}}{m_{u}^{2}} + \frac{ig}{2M_{v}/2}\phi^{+}\left(-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})\right) + \frac{ig}{4}\overline{\nu_{\lambda}}\frac{M_{k}^{R}(1-\gamma_{5})}{m_{u}^{2}}\left(-\frac{ig}{2M_{v}}\right) + \frac{ig}{2M_{v}}\frac{1}{2M_{v}}\left(-\frac{ig}{2M_{v}}\right) + \frac{ig}{2M_{v}}\left(-\frac{ig}{2M_{v}}\right) + \frac{ig}{2M_{v}}\frac{1}{2M_{v}}\left(-\frac{ig}{2M_{v}}\right) + \frac{ig}{2M_{v}}\left(-\frac{ig}{2M_{v}}\right) + \frac{ig}{2M_{v}}\left(-\frac{ig}{2$ $\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa})-m_{u}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^{5})u_{j}^{\kappa}\right)-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda}) \frac{g}{2}\frac{m_A^2}{M}H(\bar{d}_i^\lambda d_i^\lambda) + \frac{ig}{2}\frac{m_A^\lambda}{M}\phi^0(\bar{u}_i^\lambda \gamma^5 u_i^\lambda) - \frac{ig}{2}\frac{m_A^\lambda}{M}\phi^0(\bar{d}_i^\lambda \gamma^5 d_i^\lambda) + \bar{G}^a\partial^2 G^a + g_s f^{abc}\partial_a \bar{G}^a G^b g_a^c +$ $\bar{X}^{+}(\partial^{2} - M^{2})X^{+} + \bar{X}^{-}(\partial^{2} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - \frac{M^{2}}{2})X^{0} + \bar{Y}\partial^{2}Y + iqc_{m}W^{+}(\partial_{n}\bar{X}^{0}X^{-} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - M^{0})X^{-} + \bar{X}^{0}(\partial^{2} - M^{0})X^{-} + \bar{X}^{0}(\partial^{2} - M^{0})X$ $\partial_{\omega}\bar{X}^{+}X^{0}$ + $ias_{\omega}W^{+}(\partial_{\omega}\bar{Y}X^{-} - \partial_{\omega}\bar{X}^{+}\bar{Y})$ + $iac_{\omega}W^{-}(\partial_{\omega}\bar{X}^{-}X^{0} - \partial_{\omega}\bar{X}^{+}\bar{Y})$ $\partial_u \bar{X}^0 X^+ + i g s_w W^- (\partial_u \bar{X}^- Y - \partial_u \bar{Y} X^+) + i g c_w Z^0 (\partial_u \bar{X}^+ X^+ - \partial_u \bar{Y} X^+)$ $\partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM\left(\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c'}\bar{X}^{0}X^{0}H\right) + \frac{1-2c_{\nu}^{2}}{2c_{\nu}}igM\left(\bar{X}^{+}X^{0}\phi^{+} - \bar{X}^{-}X^{0}\phi^{-}\right) + \frac{1}{c'}\bar{X}^{0}\bar{X}^{0}H$ $\frac{1}{2}iqM(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+iqMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+$ $\frac{1}{2}igM(\bar{X}^+X^+\phi^0-\bar{X}^-X^-\phi^0)$.

One of the most beautiful and elegant(!) theory in physics

 $\begin{array}{l} \mathcal{L}_{SM} = -\frac{1}{2} \partial_{\nu} g_{\mu}^{a} \partial_{\nu} g_{\mu}^{a} - g_{s} f^{abc} \partial_{\mu} g_{\nu}^{a} g_{\mu}^{b} g_{\nu}^{c} - \frac{1}{4} g_{s}^{2} f^{abc} f^{adc} g_{\mu}^{b} g_{\nu}^{b} g_{\mu}^{d} g_{\nu}^{c} g_{\mu}^{b} g_{\nu}^{c} g_{\mu}^{b} g_{\nu}^{c} H_{\mu}^{c} W_{\mu}^{-} \partial_{\nu} W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-} - M^{2} W_{\mu}^{\mu} W_{\mu}^{-} - \frac{1}{2} \partial_{\nu} Z_{\mu}^{\mu} \partial_{\nu} Z_{\mu}^{0} - \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu} - i g g_{w} (\partial_{\nu} Z_{\mu}^{a} (W_{\mu}^{+} W_{\nu}^{-} - W_{\mu}^{-} W_{\mu}^{-}$
$$\begin{split} & W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})) - \\ & igs_{w}(\partial_{\nu}A_{\theta}(W_{u}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{u}^{-}) - A_{\nu}(W_{u}^{+}\partial_{\nu}W_{u}^{-} - W_{\mu}^{-}\partial_{\nu}W_{u}^{+}) + A_{\theta}(W_{\nu}^{+}\partial_{\nu}W_{u}^{-} - W_{\mu}^{-}\partial_{\nu}W_{u}^{+}) + \\ \end{split}$$
 $W_{-}^{-}\partial_{\nu}W_{+}^{+})) - \frac{1}{2}q^{2}W_{+}W_{-}W_{+}^{+}W_{-}^{-} + \frac{1}{2}q^{2}W_{+}W_{-}W_{+}^{+}W_{-}^{-} + q^{2}c_{\omega}^{2}(Z_{0}^{0}W_{+}+Z_{0}^{0}W_{-}^{0} - Q_{0}^{0}W_{+}^{0}))$ $Z_{\mu}^{0}Z_{\nu}^{0}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{\nu}^{2}(A_{\mu}W_{\nu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{\nu}c_{\nu}(A_{\mu}Z_{\nu}^{0}(W_{\nu}^{+}W_{\nu}^{-} - A_{\nu}A_{\nu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{\nu}c_{\nu}(A_{\mu}Z_{\nu}^{0}(W_{\nu}^{+}W_{\nu}^{-} - A_{\nu}A_{\nu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{\nu}c_{\nu}(A_{\mu}Z_{\nu}^{0}(W_{\nu}^{+}W_{\nu}^{-} - A_{\nu}A_{\nu}A_{\nu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{\nu}c_{\nu}(A_{\mu}Z_{\nu}^{0}(W_{\nu}^{+}W_{\nu}^{-} - A_{\nu}A_{\nu}A_{\nu}W_{\nu}^{-}) + g^{2}s_{\nu}c_{\nu}(A_{\mu}Z_{\nu}^{0}(W_{\nu}^{-})) + g^{2}s_{\nu}c_{\nu}(A_{\mu}Z_{$ $W^{+}_{+}W^{-}_{-}) - 2A_{-}Z^{0}_{-}W^{+}_{+}W^{-}_{-}) - \frac{1}{2}\partial_{-}H\partial_{-}H - 2M^{2}\alpha_{b}H^{2} - \partial_{-}\phi^{+}\partial_{-}\phi^{-} - \frac{1}{2}\partial_{-}\phi^{0}\partial_{-}\phi^{0} -$ $\beta_h \left(\frac{2M^2}{r^2} + \frac{2M}{r}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-) \right) + \frac{2M^4}{r^2}\alpha_h$ $g \alpha_h M (H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^-) \frac{1}{2}g^2\alpha_h (H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2)$ $gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{d^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H \frac{1}{2}iq\left(W_{+}^{+}(\phi^{0}\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}\phi^{0})-W_{+}^{-}(\phi^{0}\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}\phi^{0})\right)+$ $\frac{1}{2}q\left(W_{+}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)+W_{-}^{-}(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H)\right)+\frac{1}{2}q\frac{1}{2}(Z_{+}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{-}^{-}(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H))$ $M\left(\frac{1}{c}Z_{\mu}^{0}\partial_{\mu}\phi^{0}+W_{\mu}^{+}\partial_{\mu}\phi^{-}+W_{\mu}^{-}\partial_{\mu}\phi^{+}\right)-ig\frac{s_{\mu}^{2}}{c}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})$ $W_{-}^{-}\phi^{+}) - ig \frac{1-2c_{w}^{2}}{2}Z_{\mu}^{0}(\phi^{+}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) + igs_{w}A_{\mu}(\phi^{+}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) \frac{1}{4}g^2W^+_{\mu}W^-_{\mu}(H^2 + (\phi^0)^2 + 2\phi^+\phi^-) - \frac{1}{8}g^2\frac{1}{c^2}Z^0_{\mu}Z^0_{\mu}(H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2\phi^+\phi^-) \frac{1}{2}g^2 \frac{s_u^2}{2} Z_u^0 \phi^0(W_u^+ \phi^- + W_u^- \phi^+) - \frac{1}{2}ig^2 \frac{s_u^2}{2} Z_u^0 H(W_u^+ \phi^- - W_u^- \phi^+) + \frac{1}{2}g^2 s_w A_u \phi^0(W_u^+ \phi^- + W_u^- \phi^+)$ $W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{\mu}A_{\mu}H(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+}) - g^{2}\frac{\pi}{2}(2c_{\mu}^{2}-1)Z_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-} - W_{\mu}^{-}\phi^{+})$ $g^2 s^2_w A_u A_u \phi^+ \phi^- + \frac{1}{2} i g_s \lambda^a_{ii} (\bar{q}^\sigma \gamma^\mu q^\sigma_i) g^a_u - \bar{e}^\lambda (\gamma \partial + m^\lambda_e) \bar{e}^\lambda - \bar{\nu}^\lambda (\gamma \partial + m^\lambda_u) \nu^\lambda - \bar{u}^\lambda_i (\gamma \partial + m^\lambda_u) \bar{e}^\lambda_i$ $m_{\nu}^{\mu}u_{\lambda}^{\mu} - \bar{d}_{i}^{\lambda}(\gamma \partial + m_{d}^{\lambda})d_{i}^{\lambda} + igs_{w}A_{\mu}\left(-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{2}(\bar{u}_{i}^{\lambda}\gamma^{\mu}u_{i}^{\lambda}) - \frac{1}{2}(\bar{d}_{i}^{\lambda}\gamma^{\mu}d_{i}^{\lambda})\right) +$ $\frac{ig}{i\pi}Z_{\nu}^{0}\{(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})+(\bar{e}^{\lambda}\gamma^{\mu}(4s_{\nu}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{d}_{\lambda}^{\lambda}\gamma^{\mu}(\frac{4}{2}s_{\nu}^{2}-1-\gamma^{5})d_{\lambda}^{\lambda})+$ $(\bar{u}_{i}^{\lambda}\gamma^{\mu}(1-\frac{8}{3}s_{w}^{2}+\gamma^{5})u_{i}^{\lambda})\}+\frac{ig}{2\sqrt{2}}W_{\mu}^{+}((\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})U^{lep}_{\lambda\kappa}e^{\kappa})+(\bar{u}_{i}^{\lambda}\gamma^{\mu}(1+\gamma^{5})C_{\lambda\kappa}d_{i}^{\kappa}))+$ $\frac{ig}{2\sqrt{\sigma}}W^{-}_{\mu}\left((\bar{e}^{\kappa}U^{lep^{\dagger}}_{\kappa\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})+(\bar{d}^{\kappa}_{i}C^{\dagger}_{\kappa\lambda}\gamma^{\mu}(1+\gamma^{5})u^{\lambda}_{i})\right)+$ $\frac{ig}{2M/2}\phi^{+}\left(-m_{e}^{\kappa}(\bar{\nu}^{\lambda}U^{lep}{}_{\lambda\kappa}(1-\gamma^{5})e^{\kappa})+m_{\nu}^{\lambda}(\bar{\nu}^{\lambda}U^{lep}{}_{\lambda\kappa}(1+\gamma^{5})e^{\kappa}\right)+$ $\frac{ig}{2M\sqrt{\beta}}\phi^{-}\left(m_{\phi}^{\lambda}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}^{\dagger}(1+\gamma^{5})\nu^{\kappa})-m_{\nu}^{\kappa}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}^{\dagger}(1-\gamma^{5})\nu^{\kappa}\right)-\frac{g}{2}\frac{m_{\phi}^{\lambda}}{M}H(\bar{\nu}^{\lambda}\nu^{\lambda}) \frac{a}{2}\frac{m_{\lambda}^{\lambda}}{M}H(\bar{e}^{\lambda}e^{\lambda}) + \frac{ia}{2}\frac{m_{\lambda}^{\lambda}}{M}\phi^{0}(\bar{\nu}^{\lambda}\gamma^{5}\nu^{\lambda}) - \frac{ia}{2}\frac{m_{\lambda}^{\lambda}}{M}\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda}) - \frac{1}{4}\bar{\nu}_{\lambda}\frac{M_{\lambda \kappa}^{R}}{M_{\lambda \kappa}^{R}}(1-\gamma_{5})\hat{\nu}_{\kappa} \frac{1}{4}\overline{\nu_{\lambda}}\frac{M_{\lambda\kappa}^{R}(1-\gamma_{5})\hat{\nu}_{\kappa}}{m_{u}^{2}} + \frac{ig}{2M_{v}/2}\phi^{+}\left(-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})\right) + \frac{ig}{4}\overline{\nu_{\lambda}}\frac{M_{k}^{R}(1-\gamma_{5})}{m_{u}^{2}}\left(-\frac{ig}{2M_{v}}\right) + \frac{ig}{2M_{v}}\frac{1}{2M_{v}}\left(-\frac{ig}{2M_{v}}\right) + \frac{ig}{2M_{v}}\left(-\frac{ig}{2M_{v}}\right) + \frac{ig}{2M_{v}}\frac{1}{2M_{v}}\left(-\frac{ig}{2M_{v}}\right) + \frac{ig}{2M_{v}}\left(-\frac{ig}{2M_{v}}\right) + \frac{ig}{2M_{v}}\left(-\frac{ig}{2$ $\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa})-m_{u}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^{5})u_{j}^{\kappa}\right)-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda}) \frac{g}{2}\frac{m_A^2}{M}H(\bar{d}_i^\lambda d_i^\lambda) + \frac{ig}{2}\frac{m_A^\lambda}{M}\phi^0(\bar{u}_i^\lambda \gamma^5 u_i^\lambda) - \frac{ig}{2}\frac{m_A^\lambda}{M}\phi^0(\bar{d}_i^\lambda \gamma^5 d_i^\lambda) + \bar{G}^a\partial^2 G^a + g_s f^{abc}\partial_a \bar{G}^a G^b g_a^c +$ $\bar{X}^{+}(\partial^{2} - M^{2})X^{+} + \bar{X}^{-}(\partial^{2} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - \frac{M^{2}}{2})X^{0} + \bar{Y}\partial^{2}Y + iqc_{m}W^{+}(\partial_{n}\bar{X}^{0}X^{-} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - M^{0})X^{-} + \bar{X}^{0}(\partial^{2} - M^{0})X^{-} + \bar{X}^{0}(\partial^{2} - M^{0})X$ $\partial_{\omega}\bar{X}^{+}X^{0}$ + $ias_{\omega}W^{+}(\partial_{\omega}\bar{Y}X^{-} - \partial_{\omega}\bar{X}^{+}\bar{Y})$ + $iac_{\omega}W^{-}(\partial_{\omega}\bar{X}^{-}X^{0} - \partial_{\omega}\bar{X}^{+}\bar{Y})$ $\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{Y}X^{+})+igc_{w}Z_{\mu}^{0}(\partial_{\mu}\bar{X}^{+}X^{+}-igc_{w}Z_{\mu}^{0})$ $\partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM\left(\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c'}\bar{X}^{0}X^{0}H\right) + \frac{1-2c_{\nu}^{2}}{2c_{\nu}}igM\left(\bar{X}^{+}X^{0}\phi^{+} - \bar{X}^{-}X^{0}\phi^{-}\right) + \frac{1}{c'}\bar{X}^{0}\bar{X}^{0}H$ $\frac{1}{2}iqM(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+iqMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+$ $\frac{1}{2}igM(\bar{X}^+X^+\phi^0-\bar{X}^-X^-\phi^0)$.

Conventional hadrons

 $\begin{array}{l} \sim \textbf{20 classes of baryons} \\ (N, \Delta, \Lambda_{(b/c)}, \Xi_{(b/c)}, \Omega_{(b/c)}, \dots) \end{array}$

Variety of the hadronic states

- Many structures are possible
- Exotic states in light sector:
 - Spin-exotic (non- $q\bar{q}$ quantum numbers) and Crypto exotic (extra-numerous)

Ordinary matter:

Variety of the hadronic states

- Many structures are possible
- Exotic states in light sector:
 - Spin-exotic (non- $q\bar{q}$ quantum numbers) and Crypto exotic (extra-numerous)

Ordinary matter:

Experimental situation on (non-strange) Light mesons

[B. Ketzer, B. Grube, D. Ryabchikov, PPNP, arXiv:1909.06366]

Experimental situation on (non-strange) Light mesons

[B. Ketzer, B. Grube, D. Ryabchikov, PPNP, arXiv:1909.06366]

- QED: hyperfine splitting
- QCD: is far not hyperfine

- QED: hyperfine splitting
- QCD: is far not hyperfine
- Example of spin-flip transition: $\rho(\uparrow\uparrow) \rightarrow \pi(\uparrow\downarrow)$ transition is a "QCD-cell division"

The plan of the talk

Introduction

- Meson spectrum
- Mass, width, pole position
- Experimental setup

Tetraquark candidate a₁(1420)

- Observation and interpretations
- Triangle Singularity in three-body decays, interference

Hadronic state is a particle

 charact. by mass (energy) and width (lifetime)

Hadronic state is a particle

 charact. by mass (energy) and width (lifetime)

- Hadronic states are **resonances** of the hadronic system
- Read m, Γ from spectrum

- Hadronic states are resonances of the hadronic system
- Read m, Γ from spectrum

Hadronic state is a particle

 charact. by mass (energy) and width (lifetime)

- Hadronic states are resonances of the hadronic system
- Read m, Γ from spectrum
- resonances are **poles** of scattering amplitude.

Resonances are poles of the amplitude

Mikhail Mikhasenko (ORIGINS Cluster)

Laboratory to study hadronic excitations

Laboratory to study hadronic excitations

Diffractive reaction

- Pion beam scattered off the proton target
- High energy guarantees *t*-channel process.
- The target provide the gluonic field
- 3π production has the largest cross section (inelastic)

Laboratory to study hadronic excitations

Diffractive reaction

- Pion beam scattered off the proton target
- High energy guarantees *t*-channel process.
- The target provide the gluonic field
- 3π production has the largest cross section (inelastic)

MS

ALICE

the state of the second s

LHCh

LHC 27 km

CERN

COMPASS Experiment

[NIM A779 (2015) 69-115]

Understanding of the 3π spectrum [COMPASS, PRD95 (2017) 032004]

The results of the main big fit

— 14 interfering waves imes 11 t'-slices simultaneously.

Understanding of the 3π spectrum [COMPASS, PRD95 (2017) 032004]

The results of the main big fit

— 14 interfering waves \times 11 t'-slices simultaneously.

Understanding of the 3π spectrum [COMPASS, PRD95 (2017) 032004]

The results of the main big fit

— 14 interfering waves \times 11 t'-slices simultaneously.

Resonance model fit

The main mass-dependent fit

[COMPASS, PRD98 (2018) 092003]

Mikhail Mikhasenko (ORIGINS Cluster)

Resonance model fit

The main mass-dependent fit

[COMPASS, PRD98 (2018) 092003]

Resonance model fit

The main mass-dependent fit

[COMPASS, PRD98 (2018) 092003]
$a_1(1420)$ tetraquark candidate

as a resonance in the 3π system

Observation of the $a_1(1420)$

[COMPASS, PRL 115 (2015) 082001]

New particle may be made of four quarks

Not something ordinary

- Too close to the ground state $a_1(1260)$
- Its width is narrower than the ground state
- Close to threshold $K^*\bar{K}$, i.e. $(d\bar{s}) + (\bar{u}s)$, $E_{\rm th} = 1.39 \,{\rm GeV}$.

Mikhail Mikhasenko (ORIGINS Cluster)

Possible scenaria

- Pole in the amplitude Genuine resonance
- Singularity of the non-pole type

Possible scenaria

- Pole in the amplitude Genuine resonance
 - Tetraquark state [Z.-G. Wang (2014)], [H.-X.Chen et al. (2015)], [T. Gutsche et al. (2017)]
 - $K^* \overline{K}$ molecule [T. Gutsche et al. (2017)]
- Singularity of the **non-pole** type

Possible scenaria

- Pole in the amplitude Genuine resonance
 - Tetraquark state [Z.-G. Wang (2014)], [H.-X.Chen et al. (2015)], [T. Gutsche et al. (2017)]
 - $K^*\bar{K}$ molecule [T. Gutsche et al. (2017)]
- Singularity of the non-pole type
 - Interference with background interplay between distant cuts

[J.-L. Basdevant, Ed. Berger, PRL114 (2015) no.19, 192001]

Possible scenaria

- Pole in the amplitude Genuine resonance
 - Tetraquark state [Z.-G. Wang (2014)], [H.-X.Chen et al. (2015)], [T. Gutsche et al. (2017)]
 - $K^* \overline{K}$ molecule [T. Gutsche et al. (2017)]
- Singularity of the non-pole type
 - Interference with background interplay between distant cuts
 - Rescattering from K^{*}K
 — Triangle singularity

[MM, A. Sarantsev, B. Ketzer, PRD 91, 094015 (2015)], confirmed by [Aceti et al, PRD 94, 096015 (2016)]

Possible scenaria

- Pole in the amplitude Genuine resonance
 - Tetraquark state [Z.-G. Wang (2014)], [H.-X.Chen et al. (2015)], [T. Gutsche et al. (2017)]
 - $K^*\bar{K}$ molecule [T. Gutsche et al. (2017)]
- Singularity of the **non-pole** type
 - Interference with background interplay between distant cuts
 - Rescattering from K^{*}K
 — Triangle singularity

[MM, A. Sarantsev, B. Ketzer, PRD 91, 094015 (2015)], confirmed by [Aceti et al, PRD 94, 096015 (2016)]

Decay chains, subchannel resonances

- The relaxation via an intermediate meson
- Direct emission of ρ -meson
- \Rightarrow resonances in $(\pi\pi)$ spectrum

- The relaxation via an intermediate meson
- Direct emission of ρ -meson
- \Rightarrow resonances in $(\pi\pi)$ spectrum

- The relaxation via an intermediate meson
- Direct emission of ρ -meson
- \Rightarrow resonances in $(\pi\pi)$ spectrum

Hadronic double-slit experiment

- Several quantum processes lead to the same outcome
- Intermediate states are entangled

Hadronic double-slit experiment

P

- Several quantum processes lead to the same outcome
- Intermediate states are entangled
- Non-perturbative process an infinite number of barriers
- Cross-channel effect scales with the resonance width

Hadronic double-slit experiment

- Several quantum processes lead to the same outcome
- Intermediate states are entangled
- Non-perturbative process an infinite number of barriers
- Cross-channel effect scales with the resonance width

Coupled channels (schematically)

- $K\bar{K}\pi$ is a possible decay of the same resonance a_1
- Two separated problems?

Coupled channels (schematically)

- $K\bar{K}\pi$ is a possible decay of the same resonance a_1
- Two separated problems? No, more entangled states (coupled channels)!
- Hadron interaction mixes probabilities

Coupled channels (schematically)

- $K\bar{K}\pi$ is a possible decay of the same resonance a_1
- Two separated problems? No, more entangled states (coupled channels)!
- Hadron interaction mixes probabilities
- Tiny fraction of the $a_1 \rightarrow K\bar{K}\pi$ probability gets into $\pi\pi\pi$,
- However, only above $K^*\overline{K}$ threshold!

The key effect - the triangle rescattering graph

- f_0 is a resonance in $(K\bar{K})$ and also in $(\pi\pi)$ system.
- Ordinary a_1 decays to $K\bar{K}\pi$ via $K^*\bar{K}$
- $K\bar{K}$ form f_0 that decays to $\pi\pi$

The key effect - the triangle rescattering graph

The key effect - the triangle rescattering graph

- f_0 is a resonance in $(K\bar{K})$ and also in $(\pi\pi)$ system.
- Ordinary a_1 decays to $K\bar{K}\pi$ via $K^*\bar{K}$
- $K\bar{K}$ form f_0 that decays to $\pi\pi$

- has a logarithmic singularity (divergence at a single point)
- $A \sim \log(s_0 m_{3\pi}^2)$ with s_0 determined by masses of involved particles.

Fit with the rescattering model [COMPASS, PRL(2021)]

Fit perfectly describes the intensity and the phase motion

- No shape parameters for the signal component (TS)
- Background with constant phase is needed to shift the amplitude
- TS model shows a comparable quality to the resonance model (BW-model)

Systematic studies

 $\begin{array}{l} \text{TS model} \\ \text{systematically yields} \\ \text{a similar } \mathcal{R}_{\text{red}}^2 \text{ as the} \\ \text{BW model.} \end{array}$

- Neglecting interference of the conjugated decay chains,
- Neglecting the spins of the particles involved,
- Including the excitations $a_1(1640)$ and $a_2(1700)$
- \bullet Varying mass and width of the K^* resonance

Emerging interpretation [COMPASS, PRL (2021)]

Emerging interpretation [COMPASS, PRL (2021)]

- a₁(1420) signal can be described with a₁(1260) as source for the rescattering via the triangle diagram ⇒ the first clear observation of the TS
- An additional pole is not needed, although, not excluded

Conclusions and outlook

- Hadron **spectroscopy** is a unique tool for understanding the QCD, the theory of matter formation
- **Diffractive** reaction is a clean setup for measurements of the excitation spectrum
- COMPASS leads the effort of large combined light-quark meson studies

The story of $a_1(1420)$

- $a_1(1420)$ signal can be described with the ordinary a_1 meson as source for the rescattering via the triangle diagram
- Old theoretical concept, but observed clearly for the first time!
- \bullet A small effect, $\sim 1\%$ as could have been anticipated
- Peak and phase motion are not unique sign of a resonance!

Signal in $f_0 \pi P$ -wave \Rightarrow established Triangle Singularity, no need for the tetraquark

Beyond the light-meson sector

Growing evidence of the exotic states with heavy flavor

• Many candidates have a hadronic threshold in vicinity: (Meson)(Meson) of (Meson)(Baryon)

States

 $X_0(2900), X_1(2900)$ [22,23]

 $\chi_{c1}(3872)$ [7]

 $Z_c(3900)$ [24], $Z_c(4020)$ [25,26], $Z_c(4050)$ [27], X(4100) [28], $Z_c(4200$ [29], $Z_c(4430)$ [30,31,32,33], $R_{c0}(4240)$ [32]

 $Z_{cs}(3985)$ [34], $Z_{cs}(4000)$, $Z_{cs}(4220)$ [35]

 $\chi_{c1}(4140)$ [36,37,38,39], $\chi_{c1}(4274),$ $\chi_{c0}(4500),$ $\chi_{c0}(4700)$ [38 X(4630), X(4685) [35], X(4740) [40]

X(6900) [15]

 $Z_b(10610), Z_b(10650)$ [41]

 $\begin{array}{l} P_c(4312) \ [42], \ P_c(4380) \ [43], \ P_c(4440), \ P_c(4457) \ [42], \ P_c(4357) \ [44] \\ P_{cs}(4459) \ [45] \end{array}$

Can these states (some of) be manifestation of TS?

Pentaquarks in pJ/ψ mass spectrum

- Narrow peaks in $ightarrow pJ/\psi$
- Right near $\Sigma_c^{*+} \bar{D}^{*0}$ threshold

Pentaquarks in pJ/ψ mass spectrum

- Narrow peaks in $ightarrow pJ/\psi$
- Right near $\Sigma_c^{*+} \bar{D}^{*0}$ threshold

Fit with 7 P_c^+ [Meng-Lin Du at al., PRL124 (2020) 7, 072001]

Rescattering interpretation of the P_c states [PRL 122 (2019) 22, 222001]

- TS makes a peak above threshols
- Many (relevant) thresholds $\Lambda_c \bar{D}^0$, $\Sigma_c \bar{D}^0$, $\chi_c N^*$ [Guo et al.(PRD92 (2015) 071502), U.-G. Meißner et al. (PLB751 (2015) 59), X.-H. Liu et al. (PLB757 (2016) 231), MM
 - (arXiv:1507.06552)]
- An appropriate Triangle Singularity can be found for all peaks(!)

Rescattering interpretation of the P_c states [PRL 122 (2019) 22, 222001]

- TS makes a peak above threshols
- Many (relevant) thresholds $\Lambda_c \overline{D}^0$, $\Sigma_c \overline{D}^0$, $\chi_c N^*$ [Guo et al.(PRD92 (2015) 071502), U.-G.

Meißner et al. (PLB751 (2015) 59), X.-H. Liu et al. (PLB757 (2016) 231), MM (arXiv:1507.06552)]

- An appropriate Triangle Singularity can be found for all peaks(!)
- BUT, as soon as **width** of exchange particle is taken into account

 \Rightarrow no acceptable description in rescattering picture has been found

Thank you for the attention

[COMPASS data, MM, PhD thesis]

Forward-background scattering

The high-energy exchange processes penetrate to the low energy and make resonance characterization difficult

Classical picture of near-mass-shell rescattering

Imagine cascade reaction $a_1(1260) \rightarrow K^*(892)\overline{K}$, then $K^* \rightarrow K\pi$, and calculate invariant mass of K and \overline{K} for the case when K is parallel to \overline{K} .

Partial form of Landau conditions [[Nucl. Phys. 13, 181 (1959)]]:

- All particles in loop are on mass shell.
- The alignment of moments $\vec{p}_K \uparrow \uparrow \vec{p}_{\bar{K}}$.
- K is faster then \overline{K} .