Triangle singularity in light meson sector

by Mikhail Mikhasenko, ORIGINS Excellence Cluster, Munich, Germany

04.04 at 11h15, Cubotron, 6th floor
Triangle singularity at the light-meson sector

Mikhail Mikhasenko
COMPASS Collaboration, LHCb Collaboration

Excellence Cluster ORIGINS, Munich, Germany
Joint Physics Analysis Center

July 4th, 2022
Standard model of particle physics
One of the most beautiful and elegant(!) theory in physics
Standard model of particle physics

One of the most beautiful and elegant(!) theory in physics

Mathematical equations and formulas are shown, related to the Standard Model (SM) of particle physics, including electroweak-Higgs and QCD (Quantum Chromodynamics).

SM: Electroweak-Higgs & QCD

Equations and formulas are presented in a natural and readable format.
Standard model of particle physics

One of the most beautiful and elegant(!) theory in physics

$$\mathcal{L}_{\text{SM}} = -\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} g^{abc} g_{a}^{\mu} g_{b}^{\nu} g_{c}^{\rho} \partial_{\mu} \phi \partial_{\nu} \phi \partial_{\rho} \phi - \frac{1}{2} M^{2} W^{+}_{\mu} W_{\mu}^{\ast} - \frac{1}{2} Z_{\mu} Z^{\ast}_{\mu} + M^{2} Z^{0} Z^{0} - \frac{1}{2} \partial_{\mu} A_{\mu} \partial_{\nu} A^{\nu} - \frac{1}{2} g_{a} g^{ab} F_{ab}^{\mu} F_{\mu}^{\nu} + M^{2} W^{+}_{\mu} W_{\mu}^{\ast} - \frac{1}{2} g^{abc} g_{b}^{\mu} g_{c}^{\nu} F_{a}^{\mu} F^{\nu}_{\ast} - \partial_{\mu} F_{ab}^{\mu} \partial_{\nu} F^{ab}_{\nu} - 2 \partial_{\mu} \partial_{\nu} (W^{\pm}_{\mu} W^{\ast}_{\nu} + W^{\pm}_{\nu} W^{\ast}_{\mu}) - \partial_{\mu} \partial_{\nu} (A_{\mu} A^{\ast}_{\nu} - A_{\nu} A^{\ast}_{\mu}) - 2 i g_{a} g^{abc} (Z^{0}_{\mu} g_{c}^{\rho} F_{ab}^{\rho} - \partial_{\mu} F_{ab}^{\rho} g_{c}^{\rho}) - \partial_{\mu} F_{ab}^{\mu} \partial_{\nu} F^{ab}_{\nu} - \partial_{\mu} F_{ab}^{\mu} \partial_{\nu} F^{ab}_{\nu}$$

$$\Rightarrow$$

QCD: Self-couplings of gluons, — color confinement
Standard model of particle physics

One of the most beautiful and elegant(!) theory in physics

SM: Electroweak-Higgs & QCD

QCD: Self-couplings of gluons, — color confinement

Hadronic matter
Standard model of particle physics

One of the most beautiful and elegant(!) theory in physics

\[\mathcal{L}_{SM} = -\frac{1}{2} \partial_{\mu} g_{a} \partial^{\mu} g_{a} - g_{f} f^{abc} \partial_{\mu} g_{b} \partial^{\mu} g_{c} - \frac{1}{4} f^{abc} f_{abc} \partial^{\mu} g_{a} \partial^{\mu} g_{b} - \partial_{\mu} W_{\mu}^{a} \partial_{\mu} W_{\mu}^{a} - M^{2} W_{\mu}^{a} W_{\mu}^{a} - \frac{1}{2} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} h_{\mu} A_{\mu} - A_{\mu} A_{\mu} - \lambda_{h} (\partial_{\mu} Z_{\mu}^{0}) (W_{\mu}^{a} W_{\mu}^{a} - W_{\mu}^{a} W_{\mu}^{a} - Z_{\mu}^{0} W_{\mu}^{a} W_{\mu}^{a} + Z_{\mu}^{0} W_{\mu}^{a} W_{\mu}^{a} + A_{\mu} A_{\mu} A_{\mu} + A_{\mu} A_{\mu} A_{\mu} + A_{\mu} A_{\mu} A_{\mu}) - \lambda_{s} (A_{\mu} A_{\mu} A_{\mu}) - \lambda_{h} (\partial_{\mu} Z_{\mu}^{0}) (W_{\mu}^{a} W_{\mu}^{a} - W_{\mu}^{a} W_{\mu}^{a} - Z_{\mu}^{0} W_{\mu}^{a} W_{\mu}^{a} + Z_{\mu}^{0} W_{\mu}^{a} W_{\mu}^{a}) + g s_{w}^{2} (A_{\mu} A_{\mu} A_{\mu} + A_{\mu} A_{\mu} A_{\mu} + A_{\mu} A_{\mu} A_{\mu}) + g s_{w} s_{t} (A_{\mu} Z_{\mu}^{0} W_{\mu}^{a} - W_{\mu}^{a} W_{\mu}^{a} - 2 A_{\mu} Z_{\mu}^{0} W_{\mu}^{a} W_{\mu}^{a} - \frac{1}{2} f_{\mu} h_{\mu} h - 2 M^{2} h_{\mu} h - \frac{1}{2} f_{\mu} h_{\mu} h - \frac{1}{2} f_{\mu} h_{\mu} h) - \frac{1}{2} v_{w} f_{\mu} h_{\mu} h - \frac{1}{2} g s_{w}^{2} Z_{\mu}^{0} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} g s_{w}^{2} Z_{\mu}^{0} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} g (W_{\mu}^{a} \partial_{\mu} \phi^{+} - \phi^{0} \partial_{\mu} \phi^{+} - \frac{1}{2} v_{w} f_{\mu} h_{\mu} h - \frac{1}{2} g s_{w}^{2} Z_{\mu}^{0} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} g s_{w}^{2} Z_{\mu}^{0} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} g (W_{\mu}^{a} \partial_{\mu} \phi^{+} - \phi^{0} \partial_{\mu} \phi^{+} - \frac{1}{2} v_{w} f_{\mu} h_{\mu} h - \frac{1}{2} g s_{w}^{2} Z_{\mu}^{0} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} g s_{w}^{2} Z_{\mu}^{0} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} g (W_{\mu}^{a} \partial_{\mu} \phi^{+} - \phi^{0} \partial_{\mu} \phi^{+} - \frac{1}{2} v_{w} f_{\mu} h_{\mu} h - \frac{1}{2} g s_{w}^{2} Z_{\mu}^{0} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} g s_{w}^{2} Z_{\mu}^{0} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} g (W_{\mu}^{a} \partial_{\mu} \phi^{+} - \phi^{0} \partial_{\mu} \phi^{+} - \frac{1}{2} v_{w} f_{\mu} h_{\mu} h - \frac{1}{2} g s_{w}^{2} Z_{\mu}^{0} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} g s_{w}^{2} Z_{\mu}^{0} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} g (W_{\mu}^{a} \partial_{\mu} \phi^{+} - \phi^{0} \partial_{\mu} \phi^{+} - \frac{1}{2} v_{w} f_{\mu} h_{\mu} h - \frac{1}{2} g s_{w}^{2} Z_{\mu}^{0} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} g s_{w}^{2} Z_{\mu}^{0} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} g (W_{\mu}^{a} \partial_{\mu} \phi^{+} - \phi^{0} \partial_{\mu} \phi^{+} - \frac{1}{2} v_{w} f_{\mu} h_{\mu} h - \frac{1}{2} g s_{w}^{2} Z_{\mu}^{0} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} g s_{w}^{2} Z_{\mu}^{0} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} g (W_{\mu}^{a} \partial_{\mu} \phi^{+} - \phi^{0} \partial_{\mu} \phi^{+} - \frac{1}{2} v_{w} f_{\mu} h_{\mu} h - \frac{1}{2} g s_{w}^{2} Z_{\mu}^{0} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} g s_{w}^{2} Z_{\mu}^{0} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} g (W_{\mu}^{a} \partial_{\mu} \phi^{+} - \phi^{0} \partial_{\mu} \phi^{+} - \frac{1}{2} v_{w} f_{\mu} h_{\mu} h - \frac{1}{2} g s_{w}^{2} Z_{\mu}^{0} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} g s_{w}^{2} Z_{\mu}^{0} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} g (W_{\mu}^{a} \partial_{\mu} \phi^{+} - \phi^{0} \partial_{\mu} \phi^{+} - \frac{1}{2} v_{w} f_{\mu} h_{\mu} h - \frac{1}{2} g s_{w}^{2} Z_{\mu}^{0} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} g s_{w}^{2} Z_{\mu}^{0} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} g (W_{\mu}^{a} \partial_{\mu} \phi^{+} - \phi^{0} \partial_{\mu} \phi^{+} - \frac{1}{2} v_{w} f_{\mu} h_{\mu} h - \frac{1}{2} g s_{w}^{2} Z_{\mu}^{0} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} g s_{w}^{2} Z_{\mu}^{0} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} g (W_{\mu}^{a} \partial_{\mu} \phi^{+} - \phi^{0} \partial_{\mu} \phi^{+} - \frac{1}{2} v_{w} f_{\mu} h_{\mu} h - \frac{1}{2} g s_{w}^{2} Z_{\mu}^{0} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} g s_{w}^{2} Z_{\mu}^{0} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} g (W_{\mu}^{a} \partial_{\mu} \phi^{+} - \phi^{0} \partial_{\mu} \phi^{+} - \frac{1}{2} v_{w} f_{\mu} h_{\mu} h - \frac{1}{2} g s_{w}^{2} Z_{\mu}^{0} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} g s_{w}^{2} Z_{\mu}^{0} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} g (W_{\mu}^{a} \partial_{\mu} \phi^{+} - \phi^{0} \partial_{\mu} \phi^{+} - \frac{1}{2} v_{w} f_{\mu} h_{\mu} h - \frac{1}{2} g s_{w}^{2} Z_{\mu}^{0} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} g s_{w}^{2} Z_{\mu}^{0} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} g (W_{\mu}^{a} \partial_{\mu} \phi^{+} - \phi^{0} \partial_{\mu} \phi^{+} - \frac{1}{2} v_{w} f_{\mu} h_{\mu} h - \frac{1}{2} g s_{w}^{2} Z_{\mu}^{0} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} g s_{w}^{2} Z_{\mu}^{0} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}
Conventional hadrons

\[q \bar{q} \]

\[q' \bar{q}' \]

\[q q' q'' \]

meson

baryon

\[\sim 10 \text{ classes of mesons} \]

\((\pi, \eta, K, D, D_s, B, B_s, B_c, \phi, \psi, \Upsilon) \)

and

\[\sim 20 \text{ classes of baryons} \]

\((N, \Delta, \Lambda_{(b/c)}, \Xi_{(b/c)}, \Omega_{(b/c)}, \ldots) \)

\[\times \text{ excitement} \]
Variety of the hadronic states

- Many structures are possible
- Exotic states in light sector:
 - Spin-exotic (non-\(q \bar{q} \) quantum numbers) and Crypto exotic (extra-numerous)

Ordinary matter:

- meson
- baryon
- hadronic molecules
Variety of the hadronic states

- Many structures are possible
- Exotic states in light sector:
 - **Spin-exotic** (non-$q\bar{q}$ quantum numbers) and **Crypto exotic** (extra-numerous)

Ordinary matter:

- **Meson**: $u\bar{u}$
- **Baryon**: $d\bar{d}u$
- **Hadronic molecules**: $uu\bar{d}\bar{d}$

Exotic matter:

- **Glueball**
- **Hybrid**: $\bar{u}d$
- **Tetraquark**: $\bar{u}b\bar{d}b$
Experimental situation on (non-strange) Light mesons

Experimental situation on (non-strange) Light mesons

- Many low-lying observed states are well established and in agreement with the QM
- Some have large width and non-trivial appearance in the spectrum due to overlaps and interferences

![Meson Spectrum Diagram](image-url)
Excitation spectrum of a bound system

QED

$\bar{J} = \bar{L}$

$1S$

$2S$

$2P$

Orbital quantum numbers

Energy (GeV)
Excitation spectrum of a bound system

QED

\[\vec{J} = \vec{L} + \vec{S} \]
\[\vec{S} = \vec{s}_1 + \vec{s}_2 \]

\[J = \](energy in GeV)

\[L = 0 \]
\[L = 1 \]

Orbital quantum numbers
Excitation spectrum of a bound system

QCD

Triangle singularity
Excitation spectrum of a bound system

QCD

\[2S \rightarrow \pi \]
\[2P \rightarrow a_0, a_2, b_1, a_1 \]

\[J = L + S \]
\[S = s_1 + s_2 \]

\[\times 5 \]

\[\rho \rightarrow \pi, \eta, \eta', K, \bar{K} \]
Excitation spectrum of a bound system

QCD

- QED: hyperfine splitting
- QCD: is far not hyperfine
Excitation spectrum of a bound system

- QED: hyperfine splitting
- QCD: is far not hyperfine
- Example of spin-flip transition:
 $\rho(\uparrow\uparrow) \rightarrow \pi(\uparrow\downarrow)$ transition is a “QCD-cell division”
The plan of the talk

1 Introduction
 - Meson spectrum
 - Mass, width, pole position
 - Experimental setup

2 Tetraquark candidate $a_1(1420)$
 - Observation and interpretations
 - Triangle Singularity in three-body decays, interference

3 Summary
Invariant-mass distribution, resonances

Hadronic state is a particle
- charact. by **mass** (energy) and **width** (lifetime)
Invariant-mass distribution, resonances

Hadronic state is a particle
- characterised by **mass** (energy) and **width** (lifetime)

- Hadronic states are **resonances** of the hadronic system
- Read m, Γ from spectrum
Invariant-mass distribution, resonances

Hadronic state is a particle
- charact. by **mass** (energy) and **width** (lifetime)

- Hadronic states are **resonances** of the hadronic system
- Read m, Γ from spectrum

$$E_{\text{pole}} = m_\rho - i\Gamma_\rho / 2$$
Invariant-mass distribution, resonances

Hadronic state is a particle
- characterized by mass (energy) and width (lifetime)

- Hadronic states are resonances of the hadronic system
- Read m, Γ from spectrum

- resonances are poles of scattering amplitude.

Hadronic states are resonances of the hadronic system

$E_{\text{pole}} = m_\rho - i\Gamma_\rho/2$
Resonances are poles of the amplitude

Electric circuit

\[I_{\text{rms}} = \frac{U}{R + iL\omega - \frac{i}{C\omega}} \]

Scattering

\[A_{\pi\pi} = \frac{m\Gamma}{m^2 - s - i\Gamma} \]

Graphs:
- **Electric Circuit:**
 - I_{rms} vs. ω (Mrad/s)
 - Parameters: $R = 5 \, \Omega$, $L = 5 \, \mu\text{H}$, $C = 2 \, \text{nF}$, $U_{\text{rms}} = 5 \, \text{mV}$

- **Scattering:**
 - $A_{\pi\pi}$ vs. $s \equiv m_{\pi\pi}^2$ (GeV2)
 - Parameters: $m_{\rho} = 0.77 \, \text{GeV}$, $\Gamma_{\rho} = 0.15 \, \text{GeV}$
Laboratory to study hadronic excitations

Diffractive reaction

Pion beam scattered off the proton target

High energy guarantees t-channel process.

The target provides the gluonic field

π^- production has the largest cross section (inelastic)
Laboratory to study hadronic excitations

Diffractive reaction

- Pion beam scattered off the proton target
- High energy guarantees t-channel process.
- The target provide the gluonic field
- 3π production has the largest cross section (inelastic)
Laboratory to study hadronic excitations

Diffractive reaction

- Pion beam scattered off the proton target
- High energy guarantees t-channel process.
- The target provide the gluonic field
- 3π production has the largest cross section (inelastic)
COMPASS Experiment

Spectroscopy, Structure functions
π/μ beam, 10^7 particles per 10s spill

[COMPASS Experiment (NIM A779 (2015) 69-115)]
Understanding of the 3π spectrum

The results of the main big fit

— 14 interfering waves \times 11 t'-slices simultaneously.
Understanding of the 3π spectrum

The results of the main big fit
— 14 interfering waves × 11 t'-slices simultaneously.
Understanding of the 3π spectrum

The results of the main big fit
— 14 interfering waves × 11 t'-slices simultaneously.

11 resonances are established including a new $a_1(1420)$
Resonance model fit

The main mass-dependent fit

Axial vector 1^{++}

Non-resonant coherent background

Model curve

Resonances

Nonres. comp.
Resonance model fit

The main mass-dependent fit

Axial “?” 1++

- Exotic candidate!

[COMPASS, PRD98 (2018) 092003]
Resonance model fit

The main mass-dependent fit

Non-$q\bar{q}$

1$^{−+}$

[COMPASS, PRD98 (2018) 092003]
$a_1(1420)$ tetraquark candidate

as a resonance in the 3π system
Observation of the $a_1(1420)$

[COMPASS, PRL 115 (2015) 082001]
Observation of the $a_1(1420)$

- Observation and interpretations

- COMPASS, PRL 115 (2015) 082001

- $a_1(1420)$ resonance

- $J^{PC} = 2^{++}$, $\rho \pi$ D-wave

- $J^{PC} = 1^{++}$, $\rho \pi$ S-wave

- $J^{PC} = 1^{++}$, $f_0 \pi$ P-wave

- Triangle singularity

- Mikhail Mikhasenko (ORIGINS Cluster)

- Triangle singularity

- April 4th, 2022
Observation of the $a_1(1420)$

Not something ordinary

- Too close to the ground state $a_1(1260)$
- Its width is narrower than the ground state
- Close to threshold $K^*\bar{K}$, i.e. $(d\bar{s}) + (\bar{u}s)$, $E_{th} = 1.39$ GeV.
$a_1(1420)$ interpretations

Possible scenaria

- **Pole** in the amplitude – Genuine resonance
- Singularity of the **non-pole** type
$a_1(1420)$ interpretations

Possible scenaria

- **Pole** in the amplitude – Genuine resonance
 - $K^*\bar{K}$ molecule [T. Gutsche et al. (2017)]
- Singularity of the **non-pole** type
$a_1(1420)$ interpretations

Possible scenaria

- **Pole** in the amplitude — Genuine resonance
 - $K^*\bar{K}$ molecule [T. Gutsche et al. (2017)]

- Singularity of the **non-pole** type
 - Interference with background — interplay between distant cuts

![Diagram](https://via.placeholder.com/150)

$a_1(1420)$ interpretations

Possible scenaria

- **Pole** in the amplitude — Genuine resonance
 - $K^* \bar{K}$ molecule [T. Gutsche et al. (2017)]

- Singularity of the **non-pole** type
 - Interference with background — interplay between distant cuts
 - **Rescattering** from $K^* \bar{K}$ — Triangle singularity

$a_1(1420)$ interpretations

Possible scenaria

- **Pole** in the amplitude – Genuine resonance
 - $K^* \bar{K}$ molecule [T. Gutsche et al. (2017)]

- Singularity of the **non-pole** type
 - Interference with background — interplay between distant cuts
 - **Rescattering** from $K^* \bar{K}$ — Triangle singularity

Decay chains, subchannel resonances

- The relaxation via an intermediate meson
- Direct emission of ρ-meson
 \Rightarrow resonances in $(\pi\pi)$ spectrum
Decay chains, subchannel resonances

- The relaxation via an intermediate meson
- Direct emission of ρ-meson
 \Rightarrow resonances in $(\pi\pi)$ spectrum
Decay chains, subchannel resonances

- The relaxation via an intermediate meson
- Direct emission of ρ-meson

\Rightarrow resonances in $(\pi\pi)$ spectrum
Decay chains, subchannel resonances

The relaxation via an intermediate meson

Direct emission of ρ-meson

\Rightarrow resonances in ($\pi\pi$) spectrum
Hadronic double-slit experiment

- Several quantum processes lead to the same outcome
- Intermediate states are entangled
Hadronic double-slit experiment

- Several quantum processes lead to the same outcome
- Intermediate states are entangled

- Non-perturbative process - an infinite number of barriers
- Cross-channel effect scales with the resonance width
Hadronic double-slit experiment

- Several quantum processes lead to the same outcome
- Intermediate states are entangled

- Non-perturbative process - an infinite number of barriers
- Cross-channel effect scales with the resonance width
Coupled channels (schematically)

- $K\bar{K}\pi$ is a possible decay of the same resonance a_1
- Two separated problems?
Coupled channels (schematically)

- $K\bar{K}\pi$ is a possible decay of the same resonance a_1
- Two separated problems? - No, more entangled states (coupled channels)!
- Hadron interaction mixes probabilities
Coupled channels (schematically)

- $K\bar{K}\pi$ is a possible decay of the same resonance a_1
- Two separated problems? - No, more entangled states (coupled channels)!
- Hadron interaction mixes probabilities

- Tiny fraction of the $a_1 \rightarrow K\bar{K}\pi$ probability gets into $\pi\pi\pi$,
- However, only above $K^*\bar{K}$ threshold!
The key effect - the triangle rescattering graph

- f_0 is a resonance in $(K\bar{K})$ and also in $(\pi\pi)$ system.
- Ordinary a_1 decays to $K\bar{K}\pi$ via $K^*\bar{K}$
- $K\bar{K}$ form f_0 that decays to $\pi\pi$
The key effect - the triangle rescattering graph

- f_0 is a resonance in $(K\bar{K})$ and also in $(\pi\pi)$ system.
- Ordinary a_1 decays to $K\bar{K}\pi$ via $K^*\bar{K}$
- $K\bar{K}$ form f_0 that decays to $\pi\pi$

- has a logarithmic singularity (divergence at a single point)
- $A \sim \log(s_0 - m_{3\pi}^2)$ with s_0 determined by masses of involved particles.
The key effect - the triangle rescattering graph

- f_0 is a resonance in $(K\bar{K})$ and also in $(\pi\pi)$ system.
- Ordinary a_1 decays to $K\bar{K}\pi$ via $K^*\bar{K}$
- $K\bar{K}$ form f_0 that decays to $\pi\pi$

- has a logarithmic singularity (divergence at a single point)
- $A \sim \log(s_0 - m_{f_0\pi}^2)$ with s_0 determined by masses of involved particles.
Fit with the rescattering model [COMPASS, PRL(2021)]

Fit perfectly describes the intensity and the phase motion

- No shape parameters for the signal component (TS)
- Background with constant phase is needed to shift the amplitude
- TS model shows a comparable quality to the resonance model (BW-model)
Systematic studies

- Neglecting interference of the conjugated decay chains,
- Neglecting the spins of the particles involved,
- Including the excitations $a_1(1640)$ and $a_2(1700)$
- Varying mass and width of the K^* resonance

TS model systematically yields a similar R^2_{red} as the BW model.
Emerging interpretation [COMPASS, PRL (2021)]

Triangle singularity

The cut-off $K^*\bar{K}$ cut implies $\sim \log(s - s_0)$

$\sim \frac{1}{(s - s_{a_1})}$

$\sim \frac{1}{(s - s_{a_1})}$

$\sim \frac{1}{(s - s_{a_1})}$
Emerging interpretation [COMPASS, PRL (2021)]

- $a_1(1420)$ signal can be described with $a_1(1260)$ as source for the **rescattering** via the triangle diagram \Rightarrow the first clear observation of the TS
- An additional pole is not needed, although, not excluded
Conclusions and outlook

- **Hadron spectroscopy** is a unique tool for understanding the QCD, the theory of matter formation.
- **Diffractive** reaction is a clean setup for measurements of the excitation spectrum.
- **COMPASS** leads the effort of large combined light-quark meson studies.

The story of $a_1(1420)$

- $a_1(1420)$ signal can be described with the ordinary a_1 meson as source for the rescattering via the triangle diagram.
- Old theoretical concept, but observed clearly for the first time!
- A small effect, $\sim 1\%$ as could have been anticipated.
- **Peak and phase motion are not unique sign of a resonance!**

Signal in $f_0\pi\ P$-wave \Rightarrow established Triangle Singularity, no need for the tetraquark.
Beyond the light-meson sector
Growing evidence of the exotic states with heavy flavor

- Many candidates have a hadronic threshold in vicinity: (Meson)(Meson) of (Meson)(Baryon)

<table>
<thead>
<tr>
<th>States</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_0(2900), X_1(2900)$ [22,23]</td>
</tr>
<tr>
<td>$\chi_{c1}(3872)$ [7]</td>
</tr>
<tr>
<td>$Z_c(3900)$ [24], $Z_c(4020)$ [25,26], $Z_c(4050)$ [27], $X(4100)$ [28], $Z_c(4200)$ [29], $Z_c(4430)$ [30,31,32,33], $R_{c0}(4240)$ [32]</td>
</tr>
<tr>
<td>$Z_{cs}(3985)$ [34], $Z_{cs}(4000)$, $Z_{cs}(4220)$ [35]</td>
</tr>
<tr>
<td>$\chi_{c1}(4140)$ [36,37,38,39], $\chi_{c1}(4274)$, $\chi_{c0}(4500)$, $\chi_{c0}(4700)$ [39]</td>
</tr>
<tr>
<td>$X(4630)$, $X(4685)$ [35], $X(4740)$ [40]</td>
</tr>
<tr>
<td>$X(6900)$ [15]</td>
</tr>
<tr>
<td>$Z_b(10610), Z_b(10650)$ [41]</td>
</tr>
<tr>
<td>$P_c(4312)$ [42], $P_c(4380)$ [43], $P_c(4440), P_c(4457)$ [42], $P_c(4357)$ [44]</td>
</tr>
<tr>
<td>$P_{cs}(4459)$ [45]</td>
</tr>
</tbody>
</table>

Can these states (some of) be manifestation of TS?
Pentaquarks in pJ/ψ mass spectrum

- Narrow peaks in $\rightarrow pJ/\psi$
- Right near $\Sigma_c^*+\bar{D}^{*0}$ threshold

\[\Lambda_b^0 \rightarrow (pJ/\psi) K^- \]

Diagram:
- LHCb data
- Total fit
- Background

Figure:
- $\Sigma_c^* \bar{D}^0$
- $\Sigma_c^* \bar{D}^{*0}$
- $P_c(4312)^+$
- $P_c(4440)^+$
- $P_c(4457)^+$

Legend:
- $D^{(*)0}$
- $\Sigma_c^{(*)+}$
- hadronic molecule
tightly-bound pentaquark
courtesy of D. Dominguez, CERN

[PRL 122 (2019) 22, 222001]
Pentaquarks in pJ/ψ mass spectrum

$\Lambda_b^0 \rightarrow (pJ/\psi) K^-$

- Narrow peaks in $\rightarrow pJ/\psi$
- Right near $\Sigma^*_c + \bar{D}^{*0}$ threshold

![Graph showing weighted candidates vs. $m_{J/\psi}$](image)

Fit with 7 P_c^+ [Meng-Lin Du at al., PRL124 (2020) 7, 072001]
Rescattering interpretation of the P_c states [PRL 122 (2019) 22, 222001]

- TS makes a peak above thresholds
- Many (relevant) thresholds $\Lambda_c \bar{D}^0$, $\Sigma_c \bar{D}^0$, $\chi_c N^*$
- An appropriate Triangle Singularity can be found for all peaks(!)
Rescattering interpretation of the P_c states [PRL 122 (2019) 22, 222001]

- TS makes a peak above thresholds
- Many (relevant) thresholds $\Lambda_c \bar{D}^0$, $\Sigma_c \bar{D}^0$, $\chi_c N^*$
- An appropriate Triangle Singularity can be found for all peaks(!)
- BUT, as soon as width of exchange particle is taken into account

⇒ no acceptable description in rescattering picture has been found
Thank you for the attention
Interfering background

Forward-background scattering

[COMPASS data, MM, PhD thesis]

\[
\cos \theta_{GJ} \Rightarrow m_{3\pi} \text{ (GeV)}
\]

The high-energy exchange processes penetrate to the low energy and make resonance characterization difficult.

Mikhail Mikhasenko (ORIGINS Cluster)
Classical picture of near-mass-shell rescattering

Imagine cascade reaction $a_1(1260) \rightarrow K^*(892)\bar{K}$, then $K^* \rightarrow K\pi$, and calculate invariant mass of K and \bar{K} for the case when K is parallel to \bar{K}.

Partial form of Landau conditions

[[Nucl. Phys. 13, 181 (1959)]]:

- All particles in loop are on mass shell.
- The alignment of moments $\vec{p}_K \uparrow \uparrow \vec{p}_{\bar{K}}$.
- K is faster than \bar{K}.