
CMS HGCAL and gitlab pipelines
SoC Interest Group Meeting

Arnaud Steen, on behalf of the HGCAL

May 3, 2022

Arnaud Steen, NTU CMS HGCAL May 3, 2022 1 / 18

CMS Endcap calorimeter for phase 2

Arnaud Steen, NTU CMS HGCAL May 3, 2022 2 / 18

Electronic system overview in HGCAL

Arnaud Steen, NTU CMS HGCAL May 3, 2022 3 / 18

Use of SOC in HGCAL : single module/ROC test
system

Hexa-controller test system with silicon
module

I Custom board hosting a Trenz TE0820
module with a ZYNQ UltraScale+

I "Trophy" board carrying power and
signals from/to HGCROCs

I Silicon module with embedded ROCs

Same test system for single ROC
testboard

Very similar test system for tile-module

Arnaud Steen, NTU CMS HGCAL May 3, 2022 4 / 18

Use of SOC in HGCAL : ECON-T testing

Concentrator ASICs in HGCAL
I ECON-T : collect and filter trigger primitives from HGCROC and transmit them to lpGBTs
I ECON-D : collect DAQ data from HGCROC and transmit them to lpGBTs

Arnaud Steen, NTU CMS HGCAL May 3, 2022 5 / 18

Use of SOC in HGCAL : v2/3 system tests

V2 system test:
I ZCU102 as back-end (fast command, link

capture, lpGBT control)
I Hexacontroller (with Trenz) as ECON

emulators

V3 system test:
I ZCU102 as back-end
I Hexacontroller (not in the picture) will be

used as ECON-D emulators as it is not
yet available

Arnaud Steen, NTU CMS HGCAL May 3, 2022 6 / 18

Next uses of SOC in HGCAL : robot for testing
HGCROC

≈ 120k HGCROC to test during production
2 robots will have each 5 single ROC testers

Arnaud Steen, NTU CMS HGCAL May 3, 2022 7 / 18

Next uses of SOC in HGCAL : multi-module test
system

Si-modules will be tested inside a cold box (≈ -30◦C) after assembly

Si-module +
trophy board

Hexa-controller
board with Trenz
module

6 Si module assembly centers will be equipped with such system
Hexaboards (30k) will be also tested with such system in 1 or 2 labs

Arnaud Steen, NTU CMS HGCAL May 3, 2022 8 / 18

Use of SOC in HGCAL

Similar use of TE0820 module and ZCU102:
I root and boot partitions placed in SD card
I using centos 7
I firmware loaded "manually" by the user with a python script (≈ re-writting of the fpgautil.c :

a simple command line tool to load FPGA)
I Xilinx IPs:

F Direct I2C for ROC configuration + ADC (ROC power consumption, DC levels) readout on the
"trophy" board and single ROC socket board

F Direct GPIO to control signals like resets for the ROCs, enable/power good for LDOs
I Custom IPs → AXI lite and AXI full. Using uio driver: "uio-pdrv-genirq" and uhal library

(ipbus-software):
F Control of the registers of fast command block, link capture block ...
F Readout of FIFOs
F Control of lpGBT registers

I SOMs registered on network and use DHCP
Running test in practice:

I ssh connection in the ZYNQ
I load the PL for the system at hand
I start the SW

Arnaud Steen, NTU CMS HGCAL May 3, 2022 9 / 18

Firmware and software in HGCAL test systems

Common firmware blocks for several test systems:
I Same fast command block for single module/ROC test system and V2/3 system test
I Same link capture block for

F single module/ROC test system capturing ROC data (trigger primitive or DAQ data)
F V2/3 system capturing ECON data

I "uio-pdrv-genirq" to have interface with AXI registers and software
Common software using a custom ipbus-software version to memory map the AXI
registers and read the FIFOs. Was inspired by Dan Gastler’s presentation
(ApolloUpdate slides), from which we added:

I Interrupt signal handler
I "Non-incremental" block read (to read FIFOs)

Arnaud Steen, NTU CMS HGCAL May 3, 2022 10 / 18

https://indico.cern.ch/event/921378/contributions/3919927/attachments/2067017/3469108/ApolloUpdate.pdf

Example : single module/ROC test system

DAQ flow overview

Storage
disk

DAQ client
(zmq-client,c++)

DAQ Server
(zmq-server,c++)

ZMQ master
(full_test.py,python)

I2C server
(zmq_zerver.py,python)

Yaml
Files

(initLD.yaml)

Push/Pull socket

Rep/Req socket:
-send config
-start
-stop

ZYNQ PLZYNQ PS

Hexaboard
or

Single ROC

I2C bus

Fast control
uHAL

uHAL

Python I2C

Rep/Req socket:
-send config (HGCROC config)
-read back config

Remote PC

Rep/Req socket:
- send config (L1A type, BX …)
- start run
- check if run finished

Event building
Data serialization

Link capture &
BRAM (or FIFO)

...

elinks @ 1.28 Gb
- 2 DAQ linsk per ROC
- 4 (or 2 for HD board) TRG links per
ROC

Clock and fast
commands @ 320 MHz

ROC config, with I2C

Binary data

Synchronization of the software by using zmq library: https://zeromq.org/
Configuration using yaml format: https://yaml.org/

Arnaud Steen, NTU CMS HGCAL May 3, 2022 11 / 18

https://zeromq.org/
https://yaml.org/

Gitlab chain for HGCAL firmware

Last year (link):
I vivado running in dedicated docker runner launched with gitlab pipeline
I artifacts with .bit and .dtsi files, to be downloaded as zipped file

I device tree compiler used locally to create the .dtbo file before loading the FPGA

Arnaud Steen, NTU CMS HGCAL May 3, 2022 12 / 18

https://indico.cern.ch/event/984046/contributions/4221977/attachments/2190813/3702713/asteen-1602-2021.pdf

Gitlab chain for HGCAL firmware

Update since last year:
I Device tree compiler run in the gitlab pipeline to create the .dtbo and add it to the artifacts
I Configurable (depending on the design) .xml files for ipbus-software added to the artifacts
I Artifacts packaged inside RPM
I RPMs upload to a yum repository (hosted on a eos website).

I To install/update the FW:

yum i n s t a l l −y hexaboard−hd−t e s t e r −v1p1−t rophy−v2

Arnaud Steen, NTU CMS HGCAL May 3, 2022 13 / 18

Gitlab chain for HGCAL software for single
module/ROC tester

Before having gitlab CI/CD for the SW
I DAQ server and DAQ client (c++) needed to be compile (using cmake tool) from source code
I DAQ server and client depend on several pre-requisites : ipbus-software (only server), zmq,

yaml-cpp, boost ...
Gitlab CI/CD for HGCAL software

I pipeline to build the software for aarch64 (server) and x86_64 (client)
I split the pipeline into several steps and save container image after installing pre-requisite:

1 Build container image with centos7 and with installing pre-requisites
2 Build container image : compile cppzmq latest versions
3 Build container image (only done for aarch64): compile HGCAL ipbus-software version + create and

save RPM on the yum repository
4 Use 3rd image (resp. 2nd image) image to compile the DAQ server (resp. client) + create and save

RPMs on the yum repository. Submodules (python SW) are also packaged inside the RPMs.

Arnaud Steen, NTU CMS HGCAL May 3, 2022 14 / 18

Gitlab chain for HGCAL software: docker build
template

Docker build template being re-used in steps 1,2 and 3

Arnaud Steen, NTU CMS HGCAL May 3, 2022 15 / 18

Gitlab chain for HGCAL software: dockerfiles
Step 1: starting from centos 7
image + install pre-requisite

Step 2: compile and install cppzmq (from a fork
of cppzmq in which we added the CI pipeline)

Step 3: compile HGCAL version (to have AXI over
UIO over uhal) ipbus-software

I Need ≈ 30 mins on shared runner → important to
have this step separated

Arnaud Steen, NTU CMS HGCAL May 3, 2022 16 / 18

Gitlab chain for HGCAL software: last step
Build DAQ server for aarch64: Build DAQ client for x86_64

CI/CD pipeline

Arnaud Steen, NTU CMS HGCAL May 3, 2022 17 / 18

Summary and next plans

Using gitlab pipelines and RPMs for software and firmware building and deployment.
Helpful for:

I FW/SW developers as it gives quick confirmation if a commit is OK
I FW/SW developers as it garanties that the users are using right version of FW/SW and all

their submodules
I Users: "yum install ..." without having to compile from source is easier and more convenient.

It avoid issues with different pre-requisite versions ...
Issue in getting Trenz modules with infinite delivery dates (9.9.9999)
Considering using Kria modules instead of Trenz

I Move from Vivado 2019.2 to 2021.2
Will then have Trenz, Kria and ZCU102 systems

I Plan to automatize PetaLinux build

Arnaud Steen, NTU CMS HGCAL May 3, 2022 18 / 18

