The Pierre Auger Observatory

Ralph Engel Karlsruhe Institute of Technology (KIT)

(picture curtesy S. Saffi)

The energy frontier – particles of 10²⁰ eV

Astrophysical source candidates

A really big observatory was needed

Six Month Working Group for the Design of Giant Airshower Detectors

January 30-July 30, 1995 Fermi National Accelerator Laboratory

Workshops in

- Paris (1992)
- Adelaide (1993)
- Tokyo (1993)
- Snowmass (1994)
- Fermilab (1995)

Anonymous gift

Grainger Foundation for site survey

UNESCO

NSF

Universities Research Association

University of Chicago

Cosmic rays of unknown origin have been observed at energies above 10²⁰ eV. An inter national design group is being hosted by Fermilab to produce a technical design for a cosmic ray detector with an aperture of 10,000 km²-sr. The initial concept is a surface

united nations educational, scientific and cultural organization organisation des nations unies pour l'éducation, la science et la culture organización de las naciones unidas para la educación, la ciencia y la cultura

\$50,000

\$100,000 \$100,000 \$30,000

\$50,000 \$25,000

7, place de Fontenoy, 75352 Paris 07-SP

The Dissector Connel

united nations educational, scientific and cultural organization organisation des nations unies pour l'éducation, la science et la culture organización de las naciones unidas para la educación, la ciencia y la cultura

7, place de Fontenoy, 75352 Paris 07-SP

The Director-General

DG/2.4/2121 reference:

telephone: national (1) 45.68,10.00 international + (33.1) 45.68.10.00 telex: 204461 Paris 270602 Paris telefax: 47.34.85.57

25 JUL 1994

) and to discuss ways and means he international research project

Dear Professor Cronin,

It was indeed a pleasure for me to receive you at UNESCO and to discuss ways and means by which UNESCO could help promote the development of the international research project to observe the highest energy cosmic rays.

I believe, as you do, that it is important to advance our knowledge of fundamental processes and laws in nature. The project that you are proposing would certainly do that - and more. It would become a focus for international collaboration involving physicists, astronomers, engineers and technical support staff and it would involve both the northern and the southern hemisphere. From our discussions it was clear that UNESCO could contribute significantly to the development and promotion of this project by helping your group ensure that scientists from developing countries can collaborate from the start, and by facilitating discussions and explorations aiming at finding suitable sites for the two detectors.

I confirm that UNESCO is ready to contribute during 1995 some US\$100,000 towards the cost of the participation of scientists from developing countries in the Giant Array Design Group that will begin its work early next year at the Fermi National Laboratory.

I have asked Dr Siegbert Raither from the Division of Basic Sciences to co-ordinate UNESCO's inputs to your project and to report to me periodically on its progress.

Yours sincerely,

anicy nn

Federico Mayor

Professor James Walter CRONIN The University of Chicago The Enrico Fermi Institute 5640 South Ellis Avenue Chicago, Illinois 60637-1433 USA

telephone: national (1) 45.68,10.00 telex: 204461 Paris 270602 Paris telefax: 47.34.85.57

25 JUL 1994

our knowledge of fundamental ing would certainly do that - and boration involving physicists, d involve both the northern and that UNESCO could contribute :t by helping your group ensure om the start, and by facilitating t the two detectors.

5 some US\$100,000 towards the ries in the Giant Array Design ional Laboratory.

Basic Sciences to co-ordinate lly on its progress.

Building the Pierre Auger Observatory

May 2000 – first engineering array station

"Last Friday, June 13th, at 13:00 hs, the "last" surface detector (the one with signatures from the whole Collaboration) was filled with water. It was put to work immediately afterwards."

June 2008 – completion of surface array

May 2001 – first fluorescence event

Fluorescence telescope

1 1 1

the strange

1. 1. 1

Particle detector 10 m² area, 1.20 m high 12 tons of water

100

UV transmitting filter, corrector lens, safety curtain PMT camera with 440 pixels, 1.5° FoV per pixel, 10 MHz

> 3.4 m segmented mirror (aluminum alloy, glass)

Central data acquisition building

Central Laser Facility (includes Raman Lidar)

Extreme Laser Facility

FRAM – F/Photometric Robotic Atmospheric Monitor

Raman Lidar

Supporting instruments

Laser facilities

- 0.1-100 EeV equivalent
- Autonomous Operation Vertical and Steering
- **GPS** Timing
- Hourly Monitoring of FD
- Aerosol content

IR cloud cameras

Science highlight: dipole anisotropy

6.5% dipole at 5.2 sigma Science 357 (2017) 1266

Energy-dependence of amplitude (ApJ 2018)

Amplitude

Science highlight: energy spectrum and mass composition

(RE, Nijmegen Summer School, 2006)

HiRes Fly's Eye: longitudinal shower profile (fluorescence telescopes)

⁽RE, Nijmegen Summer School, 2006)

Science highlight: energy spectrum and mass composition

(RE, Nijmegen Summer School, 2006)

Upgrade of Auger Observatory – AugerPrime

Signature Ceremony of International Agreement for the Pierre Auger Observatory

The Pierre Auger Observatory Upgrade Preliminary Design Report

April 28, 2015

Science Case Review 2013/2014

Preliminary Design Report April 2015

International Agreement Nov. 2015

Upgrade of the Observatory – AugerPrime

Physics motivation

- Composition measurement up to 10²⁰ eV
- Composition selected anisotropy
- Particle physics with air showers
- Much better understanding of new and old data

Components of AugerPrime

- 3.8 m² scintillator panels (SSD)
- New electronics (40 MHz -> 120 MHz)
- Small PMT (dynamic range WCD)
- Radio antennas for inclined showers
- Underground muon counters (750 m array, 433 m array)
- Enhanced duty cycle of fluorescence tel.

Composition sensitivity with 100% duty cycle

(AugerPrime design report 1604.03637)

radio

Progress of AugerPrime deployment

18

Data taking and deployment – local staff in Malargue

31 Staff in Malargue

The Auger Observatory in numbers

Planning phase: 1992 – 1996 Prototyping (engineering array): 1992 – 2002 Construction: 2003 – 2008 **Data taking (Phase I): 2004 – 2021**

Planning of upgrade: 2015 – 2018 Construction of upgrade: 2019 – 2023 Data taking (Phase II): beyond 2030

Auger Top 10 in INSPIRE	
112 Auger papers published	
PAPER	INSPIRE (12/03/2022)
APJ 2017 (Multimessenger)	2304
NIM 2004 (Engineering Array)	890
PRL 2008 (Spectrum)	781
¹² Science 2007 (VCV)	752
NIM 2015 (Auger Observatory) 10 933 without	676
PRL 2010 (Xmax) self-citations	644
⁸ PLB 2010 (Spectrum)	589
APP 2008 (VCV correlation)	496
NIM 2010 (Fluorescence Detector)	431
⁴ APP 2010 (VCV update)	426
PRD 2014 Part I (Xmax)	410

Brasil Italy Peru Spain USA

About 400 scientists from more than 90 institutes of 18 countries

Initial construction: ~ 53 MUSD (WBS) **Upgrade (AugerPrime): ~ 16 MUSD Operating costs (annual): ~ 1.7 MUSD**

Auger PhD students (doctoral researchers)

Total number of PhD theses: 469 already defended: 386 ongoing: 83

Large impact in field: new generation of skilled scientists

An invitation: Auger Open Data

DOI:10.5281/zenodo.4487613

opendata.auger.org

Significance $[\sigma]$

Impact in local area (Malargue) and Argentina

visítanos: 0

MANO?

www.auger.org www.auger.org.ar (también fb & twitter) **Honorable Senatorship**

Backup slides

The Pierre Auger Collaboration in March 2021

Physics summary

-#Exposure 80,000 km² sr yr (vertical, highest quality), 10^{-1} 10^{17} 120,000 km² sr yr (loose cuts, combined) - Composition tightly linked to hadronic interactions - Increasingly consistent picture is emerging

- Additional exposure 40,000 km² sr yr (vertical) expected - Enhanced composition and hybrid information

180

AugerPrime: New quality of data – multi-hybrid measurements

Measurement of proton-air cross section

(Auger PRL 109, 2012; Telescope Array PRD 92, 2015)

$$\frac{\mathrm{d}P}{\mathrm{d}X_1} = \frac{1}{\lambda_{\mathrm{int}}} e^{-X_1/\lambda_{\mathrm{int}}}$$

 $\sigma_{\mathrm{p-air}} = rac{\langle m_{\mathrm{air}}
angle}{\lambda_{\mathrm{int}}}$

- mass composition
- fluctuations in shower development (model needed for correction)

Multi-messenger astrophysics with gravitational waves

Publication 16 Oct 2017 in ApJL 70 collaborations, 953 Institutes, 3500+ Autoren Auger: limits on neutrinos (and photons)

FIRST COSMIC EVENT OBSERVED IN GRAVITATIONAL WAVES AND LIGHT

Colliding Neutron Stars Mark New Beginning of Discoveries

Collision creates light across the entire electromagnetic spectrum. Joint observations independently confirm Einstein's General Theory of Relativity, help measure the age of the Universe, and provide clues to the origins of heavy elements like gold and platinum

tational wave lasted over 100 second

On August 17, 2017, 12:41 UTC, LIGO (US) and Virgo (Europe) detect gravitational waves from the merger of two neutron stars, each around 1.5 times the mass of our Sun. This is the first detection of spacetime ripples from neutron stars.

Within two seconds, NASA's Fermi Gamma-ray Space Telescope detects a short gamma-ray burst from a region of the sky overlapping the LIGO/Virgo position. Optical telescope observations pinpoint the origin of this signal to NGC 4993, a galaxy located 130 million light years distant.

Arrival direction distribution ($E > 6 \times 10^{19} \text{ eV}$)

Ursa Major Cluster (D=20Mpc)

Virgo Cluster (D=20Mpc)

> Centaurus Supercluster (D=60Mpc)

Huchra, et al, ApJ, (2012) Dots : 2MASS catalog Heliocentric velocity <3000 km/s (D<~45MpC)

Distance ranges and matter distribution in the Universe

Cosmic rays (gamma-rays)

Anisotropy searches at highest energies

nates of UHECRs above 41 EeV smoothed with a top-hat Ma pre-trial significance map of localized overdensities. solid line. The edge of the FoV of the Pierre Auger Model flux map

Growth of test statistic (TS) compatible with linear increase **Discovery threshold of 5\sigma expected in 2025 – 2030 (Phase II) Other means to increase sensitivity (Auger 85% sky coverage)**

The multi-messenger picture of high-energy astrophysics

Cosmic-ray accelerator

Galactic magnetic field

(Santander, ISAPP 2022)

GW170817: Neutrino flux limits by Auger Observatory

5

Waiting for the first ultra-high energy neutrino

(Auger, UHECR 2018, updated)

Searches: Ultra-high energy photons

Cut at 50% photon efficiency (median)

Background compatible with stat. expectation (burn sample of data)

Multi-messenger: searches for photons in coincidence with GW events

(Philip Ruehl)

 E_{γ}^{0} [km⁻² yr⁻¹ sr

٨

Integral photon flux E_{γ}

Uniform distribution

3.6x10⁻²⁰ cm⁻² sr⁻¹ yr⁻¹ if exposure is weighted with E⁻¹ **8.5x10⁻²⁰ cm⁻² sr⁻¹ yr⁻¹** if exposure is weighted with E⁻²

Searches: Lorentz invariance violation (LIV)

(Caterina Trimarelli)

$$E^2 - p^2 = m^2 + \eta^{(n)} \frac{p^{n+2}}{M_{\rm Pl}^n}$$

$$\gamma_{\text{LIV}} = E/m_{\text{LIV}}$$
$$m_{\text{LIV}}^2 = m^2 + \eta^{(n)} \frac{p^{n+2}}{M_{\text{Pl}}^n}$$

Atmospheric phenomena: Elves

