Experiment ALICE

Filip Křížek

on behalf of the CTU, IoP and NPI ALICE teams

Day with particle and astroparticle research infrastructures, Prague 17th October 2022

ALICE at the LHC

- Investigates properties of Quark-Gluon Plasma created in collisions of heavy-ions
- Rich pp program
- ~ 1000 signing authors from ~150 institutions
- 20 authors affiliated with 3 Czech institutions

Czech Technical University (CTU) Nuclear Physics Institute (NPI) Institute of Physics (IoP)

- Czech authors are among the leading contributors to:
 - flow and correlations
 - jets
 - heavy flavor
 - photon-induced interactions
 - luminosity

Czech involvement in ALICE

Inner Tracking System

- jets
- heavy-flavor
- flow and correlations
- photon-induced reactions

Forward Diffractive Detector CTU

photon-induced reactionsluminosity

Muon Forward Tracker CTU

- heavy-flavor
- flow and correlations
- photon-induced reactions

Computing NPI + IoP

- data storage server at NPI

- Tier 2 center at IoP

Inner Tracking System (ITS)

Physics goals:

Heavy flavor quark/jet physics through large improvements on:

- primary and secondary vertex reconstruction
- tracking
- 7 layers of Monolithic Active Pixel Sensors
- 10 m^2 with 12 \cdot 10¹² pixels
- Low material budget
 - inner barrel 0.35% X₀/layer
 - outer barrel 1% X₀/layer

ALPIDE sensor

- 180 nm CMOS imaging process by TowerJazz
- 3 cm \times 1.5 cm \times 50/100 μm (1024 \times 512 pixels)
- 29 μm \times 27 $\mu m\,$ pixel pitch
- average power density < 40 mW \cdot cm⁻²
- efficiency > 99 % , fake-hit-rate < 10^{-6} events / pixel / event
- radiation tolerance TID 2.7 Mrad, NIEL 2.7×10^{13} 1 MeV n_{ed} cm⁻²

NPI contributions to ITS:

- radiation hardness tests sensors & readout unit
- sensor characterization
- development of quality control software
- detector commissioning
- in Run 2 one Ph.D. student was Silicon Strip Detector system run coordinator

Tests of radiation hardness at the NPI cyclotron⁵

NPI cyclotron U-120 M

Protons ~ 30 MeV Intensity ~1000 cm⁻² s⁻¹ to μ A

Krizek et al., NIM A 894 (2018) 87

Beam

stop plate

> Irradiated ALPIDE sensor

Quality Control (QC) for ITS

QC provides quality assessment of data recording and handling during data-taking

Layout of ITS quality plots for a QC shifter

NPI contributions:

- Modules for online data monitoring of Fake-Hit rate, clusters and tracking
- Offline trending tasks to control time evolution of ITS performance
- QC modules for MC
- Offline QA of ITS data
- Coordination of ITS QC by one Ph.D. student in second half of 2022

ITS3 - Inner Barrel of ITS for Run 4

Physics goals: further improve pointing resolution and tracking efficiency of ITS at low p_{T}

 \Rightarrow enhance HF reconstruction capabilities

LoI ALICE-PUBLIC-2018-013

MAPS produced by **65 nm CMOS** process **2D stitching on 300 mm wafers Sensor length 280 mm** Sensor width 56.5 / 75.5 / 94 mm **Thickness 20–40 µm** Pixel pitch $O(10 \times 10 \text{ µm}^2)$ Time resolution < 100 ns Radial position **18** / 24 / 30 mm

NPI contributions to ITS3:

measurement of SEU cross section in shift registers of sensor prototype
software development for DAQ board

Forward diffractive detector (FDD)

Physics goals:

- tags diffractive events by vetoing activity in forward direction
- provides triggers
- acts as a luminometer and
- monitors beam conditions

Two detectors one at each side of the interaction point

Completely built at CTU in Prague

FDD

CTU is in charge of the FDD project in ALICE

FDD installed at CERN in 2021 C-side in Feb. A-side in July

Nice vertex reconstruction with FDD timing

Clean trigger even at 500 kHz

Stable detector signal

Muon Forward Tracker (MFT)

Physics goals:

precise measurements of open HF quarks and quarkonia in the forward direction

- 500 M pixels in 5 discs the same chips as ITS
- installed in Dec. 2020

CTU contributions to MFT

- CTU group took part in the construction & commissioning
- One CTU student served as MFT system run coordinator in the first half of 2022

Quality Control software for MFT

Online checks

QC for MFT was developed, implemented and now is operated by the CTU group

Offline assessment

Benefits for society

- Student theses fully or partially related to subsystems (defended or in progress)
 - FDD: 1 MSc. + 3 BSc. MFT: 2 Ph.D. + 1 MSc. ITS: 5 Ph.D. + 4 MSc. + 2 BSc.

Computing: 2 MSc.

CERN fellows 3 physics + 4 technical

- Improvement of local infrastructure
 - new lab for development and characterization of plastic scintillators and photosensors at CTU
 - setup for radiation hardness tests at NPI
- Outreach
 - CERN master classes, Colors of Ostrava, International day of women in science, ALICE exhibition guide, ...

Outlook: ALICE 3

Physics motivation:

- high rate, high resolution, large coverage heavy-ion experiment for Run 5 (2030)
- new kinematic regime for soft QCD physics at LHC

Czech teams interested to participate in

- Tracker
- Muon chambers
- Fair share contribution 2.8 M CHF

