



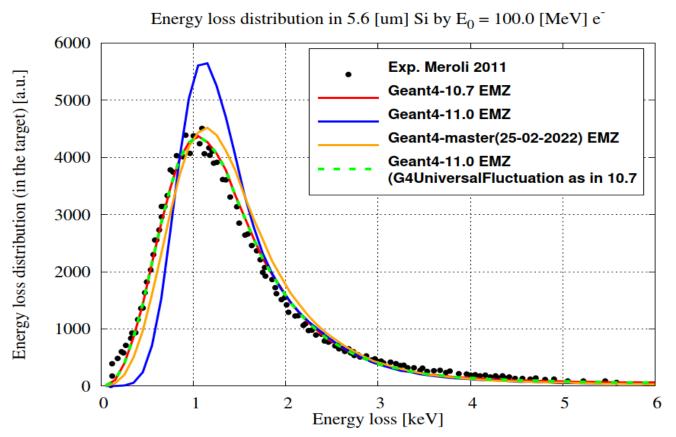


### 2022 Work-plan: Electromagnetic physics part

V. Ivanchenko, CERN & Tomsk State University, Russia for the Geant4 Collaboration Geant4 Technical Forum

24 March 2022




#### Outline

- Infrastructure and general support for EM physics
- R&D for EM physics
- Developments for HEP applications
- Updates of low-energy EM models
- Developments for medicine
- Optical photon and X-ray physics
- DNA physics and chemistry developments
- (1) first half of 2022, will be available with 11.1.beta
  (2) second half of 2022, will be available with 11.1

# Infrastructure and general support for EM physics

- Perform regular execution and regression analysis using existing testing suites (1/2)
  - Performed monthly (see geant-val and EM web)
- Further optimisation of code used by EM processes/models at initialisation (1)
  - Remove remaining duplications in the MT mode
  - Improve code to be transparent for custom physics configurations
- Reorganize code for integral method to be applicable for high energy EM and hadronic processes (1)
  - Cross section shape should be considered for transport of charged particles
  - In 10.7 and before only the first maximum in the cross section was considered
  - In **11.0** two maxima are considered (improved in **11.0.1**)
  - It will be allowed 3 maxima in **11.1** and prepared for use in hadronics
- Establish mechanism of usage of alternative models/algorithms for sampling of energy loss fluctuations for different particle types and G4Region
  - Already done

#### Problem in 11.0 (M. Novak)



- **G4UniversalFluctuation** class includes parameterization of the shape of energy deposition there may be configurations in which agreement with data is not ideal.
- For **11.0.1** it is fixed and a new alternative **G4UrbanFluctuation** class is available (equivalent to **10.7**) and another **G4LossFluctuationDummy** is added.
- Alternative classes may be configured in custom physics lists per G4Region.

### **R&D for EM physics**

- Evaluation of G4HepEm project and adopt it for Geant4 including specialized tracking (1/2)
- Addition of missing components to G4HepEm (1/2)
- Evaluation of G4HepEM for ATLAS and CMS (2)
- Investigate further optimisation possibilities provided by the G4HepEm environment such as opportunistic multi-particle tracking (1/2)
- Keep supporting the G4HepEm based AdePT GPU based EM shower simulation R&D (1/2)
- Investigate possibilities that might accelerate the EM shower simulation in HEP including high granularity detectors and sampling calorimeters (1/2)
- Implement optional Woodcock tracking of photons per G4Region (1)
- DPM like MSC modelling and complete DPM like EM simulation per particle type and detector region (1/2)

#### G4HepEm preliminary results (M.Novak, J.Handfeld, B. Morgan)

G4HepEm: motivations (just a reminder, more details in the initial or in the latest reports)

- the main goal is to investigate the possible computing performance benefits of
  - providing alternative, highly specialised (for particle types,  $e^-/e^+$ ,  $\gamma$  and HEP applications) optional stepping loops beyond the current general one
    - $\implies$  giving up the "unutilised" flexibility with the hope of some performance gain
  - having a very compact and efficient implementation of all the related run time functionalities required for an EM shower simulation

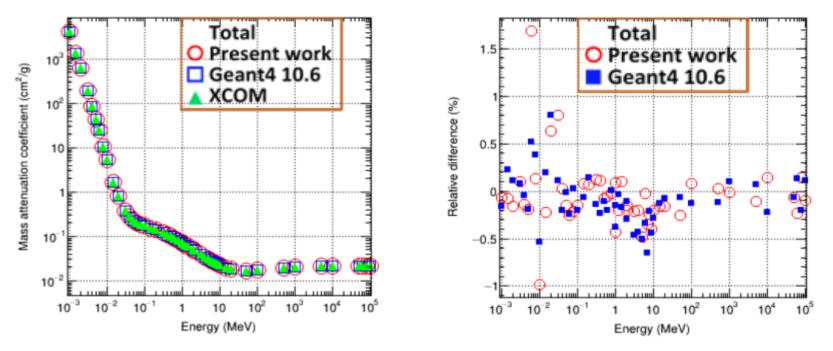
 $\implies$  compact run time library and data layout with the hope of some performance gain

#### G4HepEm: results and current state

- specialised tracking:
  - a great computing performance gain (see later) that made it to be in the last Geant4 release
  - the possibility of specialised (even external) tracking became available in Geant4-11.0 through the new G4VTrackingManager interface
  - ▶ an excellent result and a nice R&D example: less than one year form idea to release!
- G4HepEm library:
  - ▶ the core part of the EM shower modelling is completed and verified (also on GPU)
  - ▶ already a great initial computing performance gain (see later)

**Performance**:  $N = 100\ 000, E_0 = 10[GeV], e^-$  (24 threads on AMD Ryzen 9 3900)

|         |             | Physics List | Spec. Tracking         | difference |
|---------|-------------|--------------|------------------------|------------|
| TestEm3 | G4Em-Native | 471 [s]      | 402[s]                 | -14.6%     |
|         | G4HepEm     | 404[s]       | $326 \left[ s \right]$ | -19.3%     |
|         | difference  | -14.2 %      | -18.9%                 | -30.8%     |


#### **Developments for HEP applications**

- Evaluate Linhard-Sorensen ion ionisation model (1)
  - Expected improved accuracy and CPU
- Evaluate new ion energy fluctuations model based on Linhard-Sorensen theory (2)
  - SPS data for relativistic ions will be used
- Introduce EPICS2017 cross sections as an option for standard gamma models (1)
  - In 11.0 it is available only to Livermore EM models
- Further Developments and testing for polarized gamma transport (1/2)
- Introduce bremsstrahlung on atomic electrons at high and moderate energies with triplet production (2)
- Extend energy limit for positron annihilation to hadrons (2)
- Implement muon pair production by e+- (2)
  - summer student project

### Improved accuracy of parameterisation of gamma cross sections

#### Comparative study: mass attenuation coefficient

- Example: material = water, for total (all processes)
- A good agreement with XCOM data was observed



#### Updates of low-energy EM models

- Introduce EPICS2017 electron ionisation model (1)
- Using EPICS2017 cross section in G4LowEPComptonModel (2)
- Development of the new advanced example for x-ray polarimetry (2)
- Providing ionization cross-sections for 0.1 to 100 MeV for Li, C and O ions based on ECPSSR (2)
- Deployment of new model of the three-gamma annihilation (2)
- Validation of ANSTO PIXE data (1/2)
- Improve implementation of MicroElec models and extend list of materials (1/2)
- Migration of PolO1 extended example to the MT mode (1)

#### Developments for medicine (G4-Med project)

- Integration of DNA Physics Lists in some geant-val tests (1)
- Introduce extra tests to geant-val (1/2)
  - radioactive decay
  - nuclear medicine
  - X-ray radiotherapy
- Add new radiobiology extended example (2)
- Validation for Human normal and malignant cell irradiations by ions (1/2)
- Radiobiological Data Acquisition (1/2)

#### **Optical photon and X-ray physics**

- Maintenance and optimisation of optical classes (1/2)
- Continue integration of Opticks package (GPU based) (1/2)

## DNA physics and chemistry developments

- Improvement DNA physics model for ions (1/2)
- Implementation in Geant4-DNA, of electron physics models in deoxyribose and phosphate (2)
- Implementation of the Relativistic Option 4 electron inelastic model (1/2)
- Development of a discrete model for protons using dielectric response function up to 100 MeV (1/2)
- Study of the effect of step size and cuts on radiation dose in small size volumes using Standard and DNA physics (1/2)
- Incorporation of proton cross-sections in liquid water above 100 MeV for Geant4-DNA models (1)
- Development N2 and C3H8 DNA cross sections (1)
- Development on an alternative chemistry framework using IRT and Gillespie in a single simulation (2)