LHCb Overview

LHCb – a unique place in heavy ion physics

- Unique forward rapidity coverage
 - Unparalled access to low- and high-x regions inside the nucleus

Large forward momentum boost

- Full PID, reconstruct resonances to $p_T = 0$
- Clear separation between primary and displaced vertices

Fast DAQ and detectors

• Access to rare probes: higher quarkonia, exotic states

Upgraded fixed-target system

- Explore p+gas and Pb+gas collisions
- Hugely versatile physics program

Major upgrades underway

Increase centrality reach from ~60% to ~30% in PbPb

Constraining nPDFs with D mesons

JHEP 1710 (2017)

• LHCb D meson data: significantly more precise than calculations from older nPDF sets

Constraining nPDFs with D mesons

- LHCb D meson data: significantly more precise than calculations from older nPDF sets
- Now included as constraint in updated nPDF sets

LHCb data currently constrains nPDFs down to $x\sim10^{-6}$ Places especially stringent bounds on gluon nPDF

Nuclear modification of identified particles allows us to probe mass-dependent effects

Nuclear modification of identified particles allows us to probe mass-dependent effects

Tom Boettcher
Tues 16:30

- Nuclear modification of identified particles allows us to probe mass-dependent effects
- The η' is especially interesting: a meson with nearly the same mass as a proton

Tom Boettcher
Tues 16:30

Tom Boettcher

- Nuclear modification of identified particles allows us to probe mass-dependent effects
- The η' is especially interesting: a meson with nearly the same mass as a proton
- No evidence for mass-dependent R_{pPb}
- Potential baryon vs meson effects?

Important input towards a precision direct photon measurement

Intrinsic charm

• Z + jet production at forward rapidity probes high x region – sensitive to intrinsic charm

Intrinsic charm

 LHCb data favors calculations allowing IC at most forward rapidity

Recent global PDF analysis finds 3σ evidence for IC in proton: NNPDF collab, *Nature* 608 (2022)

• Data currently statistics limited, Run 3+ fertile soil for future exploration

Charm in fixed-target collisions

- Multiple charm(onium) results now available from pHe, pNe, pAr, PbNe collisions
- Allows us to study onset of nuclear effects and transition to QGP as a function of system size

Charm in fixed-target collisions

LHCD

- Multiple charm(onium) results now available from pHe, pNe, pAr, PbNe collisions
- Allows us to study onset of nuclear effects and transition to QGP as a function of system size
- One example: use open charm as baseline to study charmonium suppression

No evidence for "anomalous suppression" in PbNe Coming soon: PbAr data

- LHCD
- A significant fraction of J/ψ production comes from feeddown: decays of higher charmonia states
- Higher charmonia with weaker binding energies may also be more sensitive to final-state effects

Higher charmonia in pPb

LHCb-PAPER-2023-024, 028 in preparation

Cesar da Silva Tues 12:40

• Higher charmonia with weaker binding energies may also be more sensitive to final-state effects

Higher charmonia in pPb

LHCb-PAPER-2023-024, 028 in preparation

- A significant fraction of J/ψ production comes from feeddown: decays of higher charmonia states
- Higher charmonia with weaker binding energies may also be more sensitive to final-state effects

Cesar da Silva Tues 12:40

- Unique low-pT access to $\chi_{c1,2}$ a significant source of feeddown, measured with precision
- Detailed new study of prompt and non-prompt $\psi(2S)$ suppression in pPb
- Provides new constraints on the potential impact of QGP color screening in small systems

NEW!

Strangeness enhancement in charm

• How does the underlying event affect the hadronization process?

LHCb-PAPER-2023-021 in preparation

• LHCb's access to heavy quark states gives powerful probes of confinement mechanisms

Chenxi Gu
Tues 12:20

- nPDF calculations cannot describe forward/backward ratio for D_s^+
 - Final state effects? Hadronization modified?
 - A precision regime where nPDFs assumptions no longer apply?

Strangeness enhancement in charm

How does the underlying event affect the hadronization process?

LHCb pPb

LHCb's access to heavy quark states gives powerful probes of confinement mechanisms

+LHCb prompt D_s^+

LHCb-PAPER-2023-021 in preparation

LHCb pPb forward, 12.2 nb⁻¹

Chenxi Gu Tues 12:20

Backward

NEW!

Bottom baryon enhancement in pp

LHCb-PAPER-2023-027 in preparation

• Heavy *b* quarks have relatively long wavelengths – large overlap with bulk particles

LHCb has unique access to large sets of b baryons and mesons at low p_T

Chenxi Gu Tues 12:20

Bottom baryon enhancement in pp

LHCb-PAPER-2023-027 LHCb has unique access to large sets of b baryons and mesons at low p_T in preparation

Heavy b quarks have relatively long wavelengths – large overlap with bulk particles

Chenxi Gu Tues 12:20

Compare to baryon/meson ratio from e^+e^- collisions

NEW!

Bottom baryon enhancement in pp

- LHCb has unique access to large sets of b baryons and mesons at low p_T
- Heavy b quarks have relatively long wavelengths large overlap with bulk particles

LHCb-PAPER-2023-027 in preparation

Chenxi Gu

Reproduced at low multiplicity

Bottom baryon enhancement in pp

- LHCb has unique access to large sets of b baryons and mesons at low p_T
- Heavy b quarks have relatively long wavelengths large overlap with bulk particles

LHCb-PAPER-2023-027 in preparation

- Compare to baryon/meson ratio from e^+e^- collisions
 - Reproduced at low multiplicity and high pT:
 - Pure fragmentation limit achieved in pp

Modification of X(3872) in pPb^{LHCb-PAPER-2023-026} in preparation

- LHCb can uniquely reconstruct exotic hadrons at low p_T
- Exotic multiquark states can give new constraints on hadronization models at unprecedented NCQ

X(3872) structure: Compact? Hadrocharmonium?

Hadronic molecule?

Modification of X(3872) in pPb^{LHCb-CONF-2022-001}

- LHCb can uniquely reconstruct exotic hadrons at low p_T
- Exotic multiquark states can give new constraints on hadronization models at unprecedented NCQ

Cesar da Silva **Tues 12:40**

X(3872) structure:

Compact? Hadrocharmonium?

Hadronic molecule?

Something different between exotic state and conventional charmonia

Nuclei production

New methods are being developed to positively identify d and 3 He produced at LHCb

Deuteron production with SMOG data – particle ID accomplished by TOF with Outer Tracker

Nuclei production

• New methods are being developed to positively identify d and 3 He produced at LHCb

Chiara Lucarelli poster

Deuteron production with SMOG data – particle ID accomplished by TOF with Outer Tracker

Event display of hypertriton decay candidate – ³He identified by dE/dx in silicon layers

Nuclei production

• New methods are being developed to positively identify d and 3 He produced at LHCb

Chiara Lucarelli poster

Extremely clean sample of hypertritons —
Method gives access to exotic nuclei in pp,pA, AA collider data
and will also be applied to fixed-target collisions

Event display of hypertriton decay candidate – ³He identified by dE/dx in silicon layers

Charmonium in UPC PbPb collisions

LHCD

- LHCb has full particle ID and collects large samples of UPC events
- Soft particles (which can be produced through coherent processes) can be measured
- Forward reach and high statistics provides new constraints on saturation models

Xiaolin Wang Weds 9:50

Previous LHCb measurements confirmed presence of the ridge at forward rapidity in pPb collisions

Ping Wong
Tues 13:00

Collectivity in PbPb

LHCb-PAPER-2023-031 in preparation

• Previous LHCb measurements confirmed presence of the ridge at forward rapidity in pPb collisions

New results show stronger ridge in PbPb

Ping Wong
Tues 13:00

New

Collectivity in PbPb

LHCb-PAPER-2023-031 in preparation

Previous LHCb measurements confirmed presence of the ridge at forward rapidity in pPb collisions

Ping Wong Tues 13:00

- New results show stronger ridge in PbPb
- First LHCb measurements of $v_{2,3}$ flow coefficient measurements
- A new thrust for LHCb, with unique reach into far forward angles

New

Upgrade 1(a) – Installed

- LHCb has advanced the state of the art with full streaming readout in pp at 40MHz
- All new tracking system allows reconstruction up to ~30% most central PbPb collisions

Imanol Corredoira poster

Fixed target upgrade – SMOG2

Saverio Mariani

- Dedicated gas storage cell has been installed in front of LHCb VELO
- Allows greatly increased rates of beam+gas collisions

Weds. 12:20

Fixed target upgrade – SMOG2

Saverio Mariani
Weds. 12:20

• Concurrent running with pp data will provide HUGE data samples

SMOG2 can provide any gas as target: run O+O at two collision energies simultaneously

Fixed target upgrade – SMOG2

- Concurrent running with pp data will provide HUGE data samples
- Reconstructions from 18 minutes of early 2022 data

Saverio Mariani Weds. 12:20

Tracking upgrade – Magnet Station (LS3)

- Scintillating bar tracker for very soft particles at LHCb, start installation LS3
- Expands soft physics channels previously unreachable at the LHC.
- Allows access to very low x, Q^2 region where gluon saturation may exist in nuclei.

LHCb Upgrade II (Run 5+)

Further upgraded tracking to deal with high pp pileup and heavy ion collisions

Imanol Corredoira poster

- Access the full PbPb centrality range
- Precise measurements of B hadrons, exotic states, and more at low p_T in central collisions
- R&D well underway

Discussions beginning for a new era of fixed target physics: Spin polarized target?

Ouark Matter 2023

arXiv:1901.08002

Summary

- The LHCb collaboration has a full, diverse heavy ion physics program
 - pp to pA to AA with an unmatched variety of beam and target configurations
 - pp, pHe, pNe, pAr, pPb, PbNe, XeXe, PbPb on tape, with much more to come
- LHCb detector capabilities provide unique access to rare probes of nuclear matter
 - Unprecedented access to low-x region of nuclei with identified particles
 - Precise open and hidden charm and bottom measurements in small systems
 - Unique access to higher charmonia and exotics at low p_T
- LHCb program is rapidly expanding with new capabilities
 - Vigorous upgrade program that directly impact LHCb heavy ion physics is underway

Los Alamos National Laboratory is supported by the DOE/Office of Science/Nuclear Physics and DOE Early Career Awards

