### LATTICE QCD OVERVIEW

**Attila Pásztor** 

**ELTE Eötvös Loránd University, Budapest and ELKH-ELTE Theoretical Physics Research Group** 

**QUARK MATTER 2023, HOUSTON** 



### Why is there a lattice plenary at QM?

### FULLY NON-PERTURBATIVE RESULTS IN FULL QCD ARE VALUEABLE



### The lattice formulation of QCD

Finite space-time lattice:  $N_s^3 N_t \Rightarrow$  finite dimensional integrals

Equilibrium physics:  $T = \frac{1}{N_t a}$ 

#### 1. Continuum limit:

For fixed temperature  $a \to 0 \Leftrightarrow N_t \to \infty$ 

#### 2. Thermodynamic limit:

Size is often measured in units of 1/T

Aspect ratio:  $LT = N_s/N_t$ 

Infinite volume limit:  $LT \rightarrow \infty$ 



QCD in a small box is physics, a coarse lattice in a large box is not!

### Outline

Two very difficult use cases of lattice QCD that are relevant for heavy ion physics.

### 1) Nonzero baryochemical potential (main focus of the talk)

- 1. a) The phase diagram and search for criticality
- 1. b) The equation of state of a hot-and-dense quark gluon plasma

### 2) Real time (will be briefly mentioned)

2. a) Real-time properties of heavy quarks at high T

### QCD in the grand canonical ensemble

$$\hat{p} := \frac{p}{T^4} = \frac{1}{(LT)^3} \log \operatorname{Tr} \left( e^{-(H - \mu_B B - \mu_S S)/T} \right) \quad \text{(dimensionless pressure)}$$

$$\chi_{ij}^{BS} = \frac{\partial^{i+j} \hat{p}}{\partial \hat{\mu}_{R}^{i} \partial \hat{\mu}_{S}^{j}} \qquad \left(\hat{\mu}_{B} \coloneqq \frac{\mu_{B}}{T}\right) \qquad \text{(generalized susceptibilities)}$$

DERIVATIVES ⇔ FLUCTUATIONS/CORRELATIONS:

$$\chi_1^B \propto \langle B \rangle \propto n_B; \quad \chi_2^B \propto \langle B^2 \rangle - \langle B \rangle^2; \quad \chi_{11}^{BS} \propto \langle BS \rangle - \langle B \rangle \langle S \rangle$$

### C O S T

## Lattice QCD at nonzero baryon density

Analytic continuation (ver. 1): Imaginary chemical potential method

Calculate  $\langle O \rangle$  at  ${\rm Im} \mu_B$  ( $\mu_B^2 < 0$ ), extrapolate to  $\mu_B^2 > 0$ 

Analytic continuation (ver. 2): Taylor method

Calculate 
$$\frac{\partial^n}{\partial \mu_B^n} \langle O \rangle$$
 at  $\mu_B = 0$ , extrapolate

### Reweighting:

Simulate a different theory, correct the Boltzmann weight in the observable

While <u>cut-off</u> and <u>volume</u> effects are important for every lattice result, for  $\mu_B>0$  the way we <u>extrapolate</u> is also an important point of quality control



## The phase diagram





Continuum,  $\langle S \rangle = 0$ , LT = 4

 $\mu_B>0$  quantity with good quality control!



[R. Kara, We 14:20, QCD at finite T and  $\mu$ ]

 $N_t=12, \langle S \rangle=0$ , L from small to  $\infty$ Benchmark for effective/functional approaches

These curves contain no info on the order of the transition! How do we search for criticality?

## One way: fluctuations

### **Experiment: tune to criticality**



 $T < T_c$ 

 $T \approx T_c$ 

 $T > T_c$ 

#### **HEAT THE SYSTEM**

Picture from Wikipedia

### Lattice/Taylor: try to see it from far away

$$\chi_n^B = \left(\frac{\partial^n \hat{p}}{\partial \hat{\mu}_B^n}\right)_{\mu_B = 0}$$

To as large n as possible...

To hopefully see a divergence...

### Is this even possible?

### A case study: pion condensation [Wuppertal-Budapest, 2308.06105]

- Instead of  $\mu_B$ , introduce  $\mu_I$  (prefers  $\pi^+$  over  $\pi^-$ )
- Second order transition at low T and  $\mu_I \approx m_\pi/2 \approx 70 \text{MeV}_{\text{[Son\&Stephanov, PRL (2001)]}}$  [Brandt&Endrődi,



Eventually finds the correct value.  $6^{th}$  order gives  $170 \text{MeV} \gg 70 \text{MeV}$ 

No high orders in  $\mu_B$ : analysis of the radius of convergence from Taylor data is premature

Warning: the ratio estimator is not always applicable [Giordano & Pásztor, PRD99(2019)] (here: OK)

More on radius of convergence and analytic structure: [G. Basar, Tue 16:30] [J. Goshwami, We 15:20]

### The HRG as a non-critical baseline

Hadron resonance gas (HRG) model  $p_{QCD} \approx \sum_{H} p_{H}^{free}$ 

- sum over stable hadrons and resonances
- heavy ion phenomenology uses the HRG as a non-critical baseline (non-trivial: see, e.g., [Braun-Munzinger et al, NPA1008(2021)])
- in lattice QCD: can use grand canonical ensemble
- minimum goal: establish deviations from HRG (with good quality control!)

SO, DOES THE HRG DESCRIBE LATTICE DATA?

10

## Taylor coefficients of the pressure



## 6<sup>th</sup> order: zoom in to see discrepancies

#### From imaginary chemical potential



[Wuppertal-Budapest, JHEP (2018)] (LT=4, N<sub>t</sub>=12)

### From zero chemical potential



[HotQCD, PRD105 (2022)] (LT=4,  $N_t$ =8,(12)) [D. Clarke, We 14:40]

- N<sub>t</sub>=12 (left, WB) agrees with the HRG (value and slope) better than N<sub>t</sub>=8 (right, HotQCD) at low T
- T=145-155MeV:  $N_t=12>0$  and  $N_t=8<0$

### 6<sup>th</sup> order: new dataset



[Sz. Borsányi, Tue 14:50, QCD at finite T and μ]

#### **New dataset:**

Taylor, LT=2, continuum (new discretization)

#### Lower T: cut-off effects dominate

Smaller T means larger a for fixed  $N_t$ 

5 points at least 
$$1\sigma$$
 below:  $\left(\frac{1-0.68}{2}\right)^5 \approx 10^{-4}$ 

### **Higher T: finite volume effects dominate** T<sub>c</sub> depends on L

No sign of a CEP in the Taylor coefficients up to 6<sup>th</sup> order

## Chiral criticality and the equation of state

### Smaller-than-physical quark mass @ $\mu_B = 0$ [HotQCD, PRL123 (2019)]



### See also [Kotov, Lombardo, Trunin, PLB823 (2021)]: scaling for heavier-than-physical quark masses

See also [P. Petreczky, We 17:10, QCD at finite T and  $\mu$ ]

### T and $\mu_B$ dependence with physical masses

- Empirically: approximate scaling variable  $T(1 + \kappa_2 \hat{\mu}_B^2)$   $\Rightarrow$  transition not sharpening for small  $\hat{\mu}_B^2$
- Collapse predicted by chiral scaling (⇒backup)



[Wuppertal-Budapest, PRL126 (2021)]

### Alternative expansion scheme



continuum, LT = 4,  $\mu_S = 0$ : [Wuppertal-Budapest, PRL126 (2021)] continuum, LT = 4,  $n_S = 0$ : [Wuppertal-Budapest, PRD105 (2022)]

Also, small nonzero  $n_S$ 

### Precise EoS from extrapolations

#### **Isentropes (resummation)**



### RHIC freeze-out [STAR, PRC96 (2017)]

$$\sqrt{s} = 19.6 \text{GeV} \leftrightarrow \mu_B \approx 200 \text{MeV}$$

$$\sqrt{s} = 11.5 \text{GeV} \leftrightarrow \mu_B \approx 300 \text{MeV}$$

$$\sqrt{s} = 7.7 \text{GeV} \leftrightarrow \mu_B \approx 400 \text{MeV}$$

No sign of critical lensing within errors

[P. Parotto, Tue 16:30, QCD at finite T and  $\mu$ ]

### Precise EoS from extrapolations



### **Speed of sound on the isentropes (Taylor)**



[P. Parotto, Tue 16:30 , QCD at finite T and  $\mu$ ]

[HotQCD, PRD108 (2023)]
[D. Clarke, We 14:40, QCD at finite T and μ]

### More direct methods

### Freely tune T and $\mu_B$ on the lattice?

#### Desirable:

No ill-posed analytic continuation
Data closer to conjectured CEP

#### Common lore:

**Impossible** 

#### Truth:

Possible (with reweighting), but expensive Increasingly more feasible

### Technical developments:

[JHEP05 (2020)] [PRD105 (2022)] [PRD107 (2023)] [2308.06105]

### One application: cross-check QGP EoS



[Wuppertal-Budapest, PRD 107 (2023)]

[C.H. Wong, Tue 16:10, QCD at finite T and  $\mu$ ]

For  $T \ge 145 \text{MeV}$ :

 $4^{\rm th}$  order Taylor accurate up to  $\mu_B=2T$  Alternative expansion at least up to  $\mu_B=3T$ 

Future: scan low T and larger  $\mu_B$  in small volume

### Summary on nonzero $\mu_B$

### **QGP** equation of state



- $\mu_B/T$ <2 from 4<sup>th</sup> order Taylor expansion (continuum)
- $\mu_B/T$ <3-3.5 from alternative expansion scheme (continuum)
- Direct simulations agree with extrapolations, provided that the order of expansion is high enough

### **Search for the CEP**



- No solid demonstration of any deviations from the HRG for T<145MeV in cumulants up to 6<sup>th</sup> order
- No sign of critical lensing in the QGP EoS

# Real-time physics

I only have time to advertise two recent papers. Both are about heavy quark physics.

Like at  $\mu_B>0$ , there is also an analytic continuation problem here. Transport is the most difficult, since it is related to the low frequency (large real-time) behavior



### **Heavy quark diffusion**

- Previously only available on a pure gluon background
- Now also with dynamical light quarks ( $m_{\pi}$ =320MeV)

[Altenkort et al, PRL130 (2023)]

- Small value ⇒ fast thermalization

### [H.T. Shu, Tue 16:50, QCD at finite T and μ]

+ new preliminary results:  $1/m_O$  corrections



# Real-time potential

### Static $Q\overline{Q}$ free energy (Euclidean)

[Bazavov et al, PRD 98 (2018)]



Recent review: [Bazavov & Weber (2021)]
See also [Wuppertal-Budapest, JHEP04 (2015)]

### Real-time $Q\overline{Q}$ potential

[Bazavov et al, 2308.16587]



**NOT SCREENED, COMPLEX** 

See also [Z. Tang, We 17:30, Heavy flavor]

### LATTICE TALKS @ QM 2023



# BACKUP

### LATTICE TALKS @ QM 2023 - THE CHIRAL LIMIT

X. Yao: Testing Eigenstate Thermalization Hypothesis for Non-Abelian Gauge Theories [New Theory]

Tue 10:00

C.H. Wong: Equation of state of a hot-and-dense QGP: lattice simulations at real  $\mu_B$  vs. extrapolations [QCD at finite T and  $\mu$ ]

Tue 16:10

G. Basar: Mapping the critical equation of state with resummations [New Theory]

Tue 16:30

R. Kara: Finite volume effects near the chiral crossover [QCD at finite T and µ]

We 14:20

J. Goshwami: Exploring the Critical Points in QCD with Multi-Point Padé and ML Techniques in (2+1)-flavor QCD [Critical Point]

We 15:20

#### Tue 14:50

Sz. Borsányi: High order fluctuations of conserved charges in the continuum limit [QCD at finite T and  $\mu$ ]

#### Tue 16:30

P. Parotto: QCD equation of state with improved precision from lattice simulations [QCD at finite T and  $\mu$ ]

#### Tue 16:50

H.-T. Shu: Heavy quark diffusion from 2+1 flavor lattice QCD [QCD at finite T and  $\mu$ ]

#### We 14:40

D. Clarke: QCD material parameters at zero and non-zero chemical potential from the lattice [QCD at finite T and  $\mu$ ]

#### We 17:10

P. Petreczky: Microscopic encoding of macroscopic universality [QCD at finite T and  $\mu$ ]

Connection between thermodynamic divergences in the chiral limit (macroscopic) and the eigenvalues of the Dirac equation (microscopic). [Ding et al, 2305,10916]

### LATTICE TALKS @ QM 2023 - REAL TIME PHYSICS



#### Thermalization of a chain of plaquettes

[X. Yao, PRD128 (2023)]

X. Yao: Testing Eigenstate Thermalization Hypothesis for Non-Abelian Gauge Theories [New Theory]

Tue 10:00

C.H. Wong: Equation of state of a hot-and-dense QGP: lattice simulations at real  $\mu_B$  vs. extrapolations [QCD at finite T and  $\mu$ ]

Tue 16:10

G. Basar: Mapping the critical equation of state with resummations [New Theory]

Tue 16:30

R. Kara: Finite volume effects near the chiral crossover [QCD at finite T and µ]

We 14:20

J. Goshwami: Exploring the Critical Points in QCD with Multi-Point Padé and ML Techniques in (2+1)-flavor QCD [Critical Point]

We 15:20

#### Tue 14:50

Sz. Borsányi: High order fluctuations of conserved charges in the continuum limit [QCD at finite T and  $\mu$ ]

#### Tue 16:30

P. Parotto: QCD equation of state with improved precision from lattice simulations [QCD at finite T and  $\mu$ ]

#### Tue 16:50

H.-T. Shu: Heavy quark diffusion from 2+1 flavor lattice QCD [QCD at finite T and  $\mu$ ]

#### We 14:40

D. Clarke: QCD material parameters at zero and non-zero chemical potential from the lattice [QCD at finite T and  $\mu$ ]

#### We 17:10

P. Petreczky: Microscopic encoding of macroscopic universality [QCD at finite T and  $\mu$ ]

## Beyond the hadron resonance gas

$$\chi_1^B(T, \mu_B, \mu_S) = P_{10}^{BS}(T) \sinh(\hat{\mu}_B) + P_{11}^{BS}(T) \sinh(\hat{\mu}_B - \hat{\mu}_S) + \dots + 2P_{20}^{BS}(T) \sinh(2\hat{\mu}_B) + \dots$$









...

#### S-matrix formalism:

[Dashen et al, PR187 (1969)]

Repulsive interactions  $\Rightarrow$  negative sector Attractive interactions  $\Rightarrow$  negative sector

#### **Lattice data vs repulsive extensions of HRG:**

[Huovinen, Petreczky PLB777 (2017)] [Vovchenko, Pásztor et al, PLB 775 (2017)]



[Wuppertal-Budapest, PRD104(2021)]

## Repulsive hadronic models vs lattice data

Repulsive core of NN interactions is very well established, and the HRG model does not take it into account at all!

[Huovinen, Petreczky PLB777 (2017)]

[Vovchenko, Pásztor et al, PLB 775 (2017)]





LT=4, N<sub>t</sub>=8, Taylor VS repulsive mean field

LT=4,  $N_t$ =12,  $Im\mu_B$  VS excluded volume or VdW HRG

See also [Bellwied et al, PRD 104 (2021)] for a systematic study

# O(4) scaling and resummation

Empirical observations from imaginary  $\mu_B$  data:

- 
$$\Sigma/f_{\pi}^4$$
 collapses as a function of  $T\left(1+\kappa\left(\frac{\mu_B}{T}\right)^2\right)$  but  $\Sigma/T^4$  does not

$$-\chi_1^B/(\mu_B/T)$$
 collapses as a function of  $T\left(1+\kappa\left(\frac{\mu_B}{T}\right)^2\right)$  but  $\chi_2^B$  does not

**BUT WHY?** 

One possible explanation is scaling near the chiral limit:

$$p_{QCD}(T, \mu_B, m) - p_{QCD}(0, 0, m) \sim f_{sing}(h, t) \sim t^{2-\alpha} F\left(\frac{h}{t^{\beta\delta}}\right)$$
 where  $h \sim m$  and  $t \sim T - T_{ch}(1 - \kappa(\mu_B/T_{ch})^2)$ 

$$\Rightarrow \Sigma_{sing} = m \frac{\partial}{\partial m} f_{sing} = t^{2-\alpha} \frac{h}{t^{\beta \delta}} F' \left( \frac{h}{t^{\beta \delta}} \right)$$

 $\Rightarrow$  near  $T_{ch}$  near the chiral limit,  $\Sigma/f_{\pi}^4$  is a function of the scaling variables h and t only, while  $\Sigma/T^4$  is no

$$\Rightarrow \frac{1}{(\mu_B/T_{ch})} \frac{\partial}{\partial (\mu_B/T_{ch})} f_{sing} = (2-\alpha)t^{1-\alpha} F\left(\frac{h}{t^{\beta\delta}}\right) (2\kappa) + t^{1-\alpha-\beta\delta} F'^{\left(\frac{h}{t^{\beta\delta}}\right)} (-\beta\delta)(2\kappa) \coloneqq (2\kappa)G(h,t)$$

 $\Rightarrow$  again, a function of h and t only, while

$$\frac{\partial^2}{\partial (\mu_B/T_{ch})^2} f_{sing} = (2\kappa)G(h,t) + \left(\frac{(2\kappa)\mu_B}{T_{ch}}\right)^2 \frac{\partial G}{\partial t}$$

 $\Rightarrow$  not a function of h and t only

### Resummed EoS: some details

- Systematically improvable ansatz:  $F(T, \mu_B) = F(T', 0)$   $T' = T(1 \lambda_2(T)\hat{\mu}_B^2 \lambda_4(T)\hat{\mu}_B^4 \cdots)$
- This ansatz together with a choice of the observable F defines an extrapolation scheme (resummation)
- A good choice for  $\langle S \rangle = 0$  is  $F = \frac{c_1^B(T, \widehat{\mu}_B)}{c_1^B(T \to \infty, \widehat{\mu}_B)}$  where  $c_1^B \coloneqq \left(\frac{d\widehat{p}}{d\ \widehat{\mu}_B}\right)_{\langle S \rangle = 0}$
- The normalization makes sure the infinite temperature behavior is correct
- The ansatz itself exploits the existence of the approximate scaling variable
- Already the leading order, with  $\lambda_2$  only generates terms to all orders in the Taylor expansion of  $\hat{p}$
- Analysis is like the extrapolation of  $T_c(\hat{\mu}_B)$
- Result:  $\lambda_4$  is very small, while  $\lambda_2$  has a very simple temperature dependence





# Equation of state (summary)

- 1. Realize the existence of the approximate scaling variable
- 2. Turn it into a systematically improvable extrapolation ansatz [Borsányi et al, PRL126 (2021)]
- 3. Validate the scheme by comparison with direct simulation results at non-zero density on finite (but reasonable) lattices [Borsányi et al, PRD107 (2023)]
- 4. Calculate the coefficients of the validated extrapolation scheme in the continuum in conditions relevant for heavy ion phenomenology. [Borsányi et al, PRD105(2022)]
- 5. Realize that the finite  $\mu_B$  part is so precise that the errors are dominated by  $\mu_B$ =0, so make the  $\mu_B$ =0 equation of state more precise. [P. Parotto, Tue 16:30, QCD at finite T and  $\mu$ ]

⇒ A PRECISE EQUATION OF STATE FOR THE RHIC BES RANGE

### Beyond strangeness neutrality

Makes it possible to take small local fluctuations of strangeness into account in hydrodynamics:

$$\hat{p}(T, \mu_B, R) \approx \hat{p}(T, \mu_B, 0) + \frac{1}{2} \frac{d^2 \hat{p}}{dR^2} R^2$$
 where  $R = \frac{n_S}{n_B}$ 



[Borsányi et al, PRD105 (2022)]

### Reweighting

Fields:  $\phi$  Target theory:  $Z_t = \int D\phi \ w_t(\phi)$  Simulated theory:  $Z_S = \int D\phi \ w_S(\phi)$ 

$$\langle O \rangle_t = \frac{\int D\phi \, w_t(\phi) O(\phi)}{\int D\phi \, w_t(\phi)} = \frac{\int D\phi \frac{w_t(\phi)}{w_S(\phi)} w_S(\phi) O(\phi)}{\int D\phi \frac{w_t(\phi)}{w_S(\phi)} w_S(\phi)} = \frac{\left\langle \frac{w_t}{w_S} O \right\rangle_S}{\left\langle \frac{w_t}{w_S} \right\rangle_S} \quad \text{and} \quad \frac{Z_t}{Z_S} = \left\langle \frac{w_t}{w_S} \right\rangle_S$$

Two problems (usually exponentially hard in the volume) can arise:

- sign problem:  $\frac{w_t}{w_s} \in \Rightarrow$  large signal to noise ratios
- overlap problem: tails of  $P\left(\frac{w_t}{w_s}\right)$  do not decay fast enough  $\Rightarrow$  potentially incorrect results

Two choice of  $w_s$  that eliminate this overlap problem:

- phase reweighting: 
$$w_S = e^{-S_{YM}} |\det M| \implies \frac{Z_t}{Z_S} = \langle e^{i \theta} \rangle_S$$

- sign reweighting: 
$$w_S = e^{-S_{YM}} | \operatorname{Re} \det M | \implies \frac{Z_t}{Z_S} = \langle \pm \rangle_S$$

## Staggered rooting and low T difficulties

Say I want  $N_f=2+1$  with staggered:  $Z=\int DU(\det M_{ud}(U,\mu))^{\frac{1}{2}}(\det M_S(U))^{\frac{1}{4}}e^{-S_{YM}(U)}$ 

Determinant complex, so sqrt ambiguous. Standard choice: continuously connect to the positive root at  $\mu$ =0 We empirically observe that this leads to non-analytic behavior (essential singularity) at  $\mu$ =0

The non-analytic part is suppressed for  $\mu < m_{\pi}$ 

The amplitude of the non-analytic part decreases with the lattice spacing





## Radius of convergence

$$\hat{p} = \hat{p}(T, \mu_B = 0) + \frac{1}{2}\chi_2^B \hat{\mu}_B^2 + \frac{1}{4!}\chi_4^B \hat{\mu}_B^4 + \cdots$$
 converges for  $|\hat{\mu}_B| < R = ?$ 

**Motivation:** Inside the radius of convergence of the Taylor expansion there can be no singularities in the complex  $\mu_B$  plane, and thus also no CEP on the real  $\mu_B$  line





- For complex singularities (expected, e.g., for  $T \approx T_{crossover}$ ) doesn't converge  $R=\mu_{CEP}$  [Vovchenko et al, PRD97 (2018)] [Giordano & Pásztor, PRD99(2019)]
  - There are also possible issues with lattice artefacts [Giordano et al, PRD101 (2020)] [Borsányi et al, 2308.06105]



- Higher orders not available in the continuum
- Can be phenomenologically estimated from O(4) scaling + other assumptions  $R<\mu_{CEP}$  [Mukherjee & Skokov, PRD103 (2021)]



 $\Rightarrow$  All current lattice estimates of R should be considered preliminary/exploratory estimates, with inadequate quality control ( $\Rightarrow$  MORE WORK)

# CEP at nonzero $\mu_B$ ? (Parma-Bielefeld)

#### [J. Goshwami, We 15:20]



### The basic idea

- crossover  $\Leftrightarrow$  critical point at complex  $\mu_B = \mu_{IYF}$  (Lee-Yang edge)
- near CEP:  $\mu_{IYF}$  moves to the real line
- find  $\mu_{\text{LYE}}$  by analytic continuation, extrapolate T dependence Datasets

Blue:  $N_t=6$ , imaginary  $\mu_B$  Orange:  $N_t=8$ , Taylor

- Extends the  $Z_2$  scaling near CEP all the way to  $T_c(\mu_B=0)$ , where O(4) chiral scaling is likely relevant
- Radius of convergence @ crossover is likely almost T indep.>
  - Method without truncation errors on a coarse lattice: [Giordano et al, PRD101 (2020)]
  - Phenomenological analysis assuming O(4) scaling: [Mukherjee & Skokov, PRD103 (2021)]
- Puzzle: as data becomes more like HRG (low T), the system looks more critical (smaller  $Im\mu_{LYE}$ )?
- Deviations from the HRG are probably cut-off effects
- Systematics of the blue and orange points?