





An experimental summary

Jiayin Sun INFN Cagliari







### Small systems are the baseline for QGP studies

#### Assuming no QGP is formed in small systems

# pp collisions: Baseline in vacuum QCD studies

#### *p*A collisions:

Cold Nuclear Matter (CNM) effects:
small-x physics and initial states:
nPDF and/or gluon saturation?
interactions with cold/dilute medium

#### Effects considered as signatures of QGP formation are found in small systems:

- collectivity
- strangeness enhancement
- baryon/meson enhancement
- quarkonia breakup in medium
- **X** energy loss



### CNM effects are the baseline for QGP studies





# The big questions...

Small-*x* physics and initial states: nPDF and/or gluon saturation?



#### Initial state effects

- Parton densities are modified in nuclei
  - Shadowing: depletion of the effective number of gluons in low-x.
  - Antishadowing, EMC effects...
  - Poorly constrained from previous data

- Large number of small-*x* gluons, leading to a very dense saturated wave function known as the Color Glass Condensate (CGC)
  - Saturation scale  $Q_s^2 \propto A^{1/3}$  (Lorentz contraction)
  - Expected in small x and small  $Q^2$  region







### Experimental approach

- Studied using pA collisions/ $\gamma A$  collisions
- Probes:
  - Dijets
  - Top quark
  - W/Z, Drell-Yan
  - Heavy flavor
  - Light hadrons
  - Direct photons
  - VM in Ultra-Peripheral AA Collisions
- Observables:
  - $R_{pPb}$ ,  $R_{FB}$ , production cross-section, angular correlations...





### Experimental approach

#### B. Gilbert, QM23 talk

- EPPS21 vs. EPPS16
- EPPS21 includes CMS dijets and LHCb  $D^0$  at 5 TeV
- Significant progress on constraining nPDF







# Dijets in pPb and $\gamma$ Pb collisions





- γPb collisions
  - Photon energy allows access to low-x shadowing region
  - Results consistent with theoretical model
- *p*Pb collisions
  - Measured centrality dependence of dijet yields
  - Triple-differential dijet yields → detailed studies of partonic system
  - Trend  $R_{CP}$  consistent with model



CT14+EPPS16

JHEP 05 (2021) 182

CT14+nCTEQ W/Z



# W/Z, $t\bar{t}$ , Drell-Yan production

- W measurement reaches large |y| region ( $x \sim 10^{-4}$  at forward region)
- W suppression at large rapidity
  - extending into EMC region
  - Support shadowing of the nuclear PDFs
- Data more precise than nPDFs
- New measurement of the top-quark pair production cross section in pPb







60 < m,... < 120 GeV



# Heavy flavor production pPb collisions





# Light hadrons in pPb collisions

Phys. Lett. B 827 (2022) 136943









Forward: suppression Backward:

enhancement?

$$x_{exp} \equiv \frac{Q_{exp}}{\sqrt{s_{nn}}} e^{-\eta}$$
$$Q_{exp}^2 \equiv m^2 \backslash + p_{\rm T}^2$$





### New light hadrons in dAu/pPb collisions



Hiden strange  $\phi$  meson in dAu at  $\sqrt{s_{NN}} = 200$  GeV Enhancement in Au going direction



First measurement of  $\omega$  meson in pPb collisions at LHC

No nuclear modification observed





 $\pi^0$ ,  $\eta$ , and  $\eta'$  nuclear modification factors agree No evidence of mass-dependent effects First  $\eta$  meson production measurement at forward rapidity

First measurement of  $\eta$ ' meson nuclear modification factor



#### Direct photons in pPb collisions

- Hints of suppression at lower  $p_T$
- Agreement between ALICE and ATLAS results
- Comparable suppression in nPDFs including gluon shadowing







Physics Letters B 796 (2019) 230-252



# Charmonia in PbPb ultraperipheral collisions



- Nuclear suppression factor at Bjorken-x of O(10<sup>-5</sup>) in UPC PbPb with neutron emission
- Strong constraint on nPDF at small Bjorken-*x*



# The big questions...





#### Strangeness enhancement in small systems

- $\Lambda$  and  $K_s^0$  production in dAu collisions are enhanced
- The full Probability Density Function (PDF) for (multi-)strange hadrons is measured in *pp* collisions
- The PDF expresses the probability to produce n particles of a given species per event

• The probability to produce  $n \ge 1$  strange hadron per event increases with the event charged-particle multiplicity





#### Strangeness enhancement with heavy flavor

• Observed with light flavor, charm and beauty









#### Strangeness enhancement with heavy flavor

• New observable: charm baryon ratio





#### Charm hadronization and production in pp collisions

- all ground-state charm hadron fragmentation fractions
  - $\Lambda_c^+$ ,  $\Xi_c^+$  enhanced compared to  $e^+e^-$  and  $e^-$  collisions
- $c\bar{c}$  cross section calculated from sum of  $D^0$ ,  $D^+$ ,  $D_s^+$ ,  $J/\psi$ ,  $\Lambda_c^+$ ,  $\Xi_c^0$ , and  $\Xi_c^+$  hadrons at midrapidity







# Charm baryon enhancement in pp collisions

- Different baryon to meson ratio show similar shape
- > similar formation mechanism?





arXiv:2307.11186



#### Charm baryon enhancement in pPb collisions

- $\Lambda_c^+/D^0$  ratio down to  $p_T = 0$ , prompt compatible with non-prompt ratio
- New CMS measurement consistent with ALICE result
- No multiplicity dependence observed





### More charm baryons in pp and pPb collisions

- First measurements of  $\Xi_c^0(\mathrm{dsc})/D^0$  and  $\Xi_c^+(\mathrm{usc})/D^0$  ratios in pPb collisions
- Hint of enhancement of  $\Xi_c^0(\mathrm{dsc})/D^0$  in pPb compared to pp
- $\Xi_c^+/D^0$  ratio compatible between forward and backward rapidities









#### How about beauty?

- First measurement of non-prompt  $\Lambda_c^+/D^0$
- CMS  $B^+$  production in multiplicity bins







### $\Lambda_b^0/B^0$ in pp collisions at 13 TeV

- $\Lambda_b^0/B^0$  ratio increases with multiplicity
- Higher than  $e^+e^-$  value at low  $p_T$
- Consistent with  $e^+e^-$  value at lowest multiplicity and high  $p_{\rm T}$



#### LHCb-PAPER-2023-027





# The big questions...

Quarkonia breakup comover effects?

26



#### Quarkonia in pPb collisions

- First measurement:  $\chi_{c1} + \chi_{c2}$  measured in the  $J/\psi \gamma$  decay channel.
- No final-state dissociation of  $\chi_c$  states in pPb collisions









# The big questions...

Correlations and collectivity origin of flow in small system?



#### Flow in pp system suggests proton sub-nucleon structure

- Flow decorrelation in  $\eta$
- Simple model of proton-proton collisions
  - A string per participant
  - No variation in geometry
  - No longitudinal decorrelation



Need for sub-nucleonic structure to explain data



- Nonlinear flow response
- $\rho_{4,22}$  decreasing trend indicates subnucleon structure of proton





# Flow in single jet (pp@13TeV)

Observation of enhanced long-range elliptic anisotropies inside high-multiplicity jets in pp collisions at the LHC

From how small of a system can collectivity N<sub>ch</sub> ~ 26 emerge?

• Collectivity from a fragmenting parton?

#### Dynamics of a "single-parton" in the vacuum





# Hard-soft correlations: 2PC in *pp* with jets and Underlying Event (UE)



- Is the ridge associated with jet production?
- $v_2$  from jet-UE pairs and UE-UE pairs
- No significant correlation between jets and UE
  - → ruling out hard processes contributing to the ridge





arXiv:2303.17357



# The big questions...

Jet production and properties

Energy loss and transport in medium?



# $\pi^0$ energy loss in dAu collisions?

• Experimental measure  $N_{coll}$  using direct photon

$$N_{\text{coll}}^{\text{EXP}}(p_T) = \frac{Y_{d\text{Au}}^{\gamma^{\text{dir}}}(p_T)}{Y_{pp}^{\gamma^{\text{dir}}}(p_T)} \quad \begin{array}{c} \frac{\lambda}{2} \\ \frac{\lambda}{2} \\ 0.9 \end{array}$$

•  $\pi^0$  Nuclear modification factor

$$R_{d{
m Au,EXP}}^{\pi^0} = rac{Y_{d{
m Au}}^{\pi^0}}{N_{
m coll}^{
m EXP} Y_{pp}^{\pi^0}} = rac{Y_{d{
m Au}}^{\pi^0}/Y_{pp}^{\pi^0}}{Y_{d{
m Au}}^{\gamma^{
m dir}}/Y_{pp}^{\gamma^{
m dir}}}$$

• Suppression in central collisions



arXiv: 2303.12899



# Searching for jet quenching in small systems

- Recoil jet widening and yield suppression in HM events
- Pythia8 (without jet quenching) reproduces effects
- Originates from bias induced by the HM event selection
  - Multiplicity estimator in the forward + hard process in midrapidity
  - Bias towards multi-jet final states
- Effect of the bias mimics suppression





#### Summary

- Initial state:
  - Significant progress on constraining nPDF at small and large x
  - Tension with nPDF
  - Still looking for gluon saturation
- Strangeness enhancement:
  - $D_s^+/D^+$  ratio enhanced in high multiplicity pPb collisions
- Baryon/meson ratio:
  - $\Lambda_c^+/D^0$  ratio flat dependence on multiplicity
  - $\Lambda_b^0/B^0$  ratio rises with increasing multiplicity
- Collectivity:
  - Ridge in HM single jet
- Energy loss: ?
- More
- What's next?
  - LHC Run3 + special OO run
  - LHCb SMOG2 program (high stat. proton-Gas data, <u>talk by Saverio</u> <u>Mariani</u>)
  - Electron-Ion Collider (*talk by Xuan Li*)

