

Elliptic flow across systems

Collective expansion

In Pb-Pb collisions, particles are emitted with a modulation in azimuth due to collective expansion of an elliptic initial condition

Elliptic flow across systems

Collective expansion

- In Pb-Pb collisions, particles are emitted with a modulation in azimuth due to collective expansion of an elliptic initial condition
- Also observed in p-Pb and pp
 - Initial condition not necessarily elliptic
 - **Experimental**: under which conditions does this **not** happen?
 - Pheno/theory: collective expansion also at play? Or some other (common?) phenomenon?

Beyond 'leading order':

Higher order flow and fluctuations

- Fluctuations in the initial condition (IC) give rise to higher order flow harmonics
 - → higher order flow harmonics encode info about IC
 - → Hydro modeling significantly more constrained
- Correlations of flow amplitudes of different orders: at the core of various new tools being utilized today
- Fundamental to understand if origin of collectivity is similar in various collision systems

Figure from Cindy Mordasini's talk

Origins of collectivity and role of system evolution

Origins of collectivity and role of system evolution

Experimentally, focus on:

I. In-depth study of flow correlations

- Role of initial condition vs dynamics
- 2. Rapidity as a tool for 3D dynamics
- 3. Look for extremes: e^+e^- , γA , BES / low E
- 4. Understanding the hard/soft interplay

Flow correlations in Pb-Pb

- Normalized symmetric cumulants: encode information about how flow components are correlated to one another → strong constraint to hydro
- Deviations with respect to state-of-the-art models observed in central events

Correlation between v_2 and $\langle p_T \rangle$

√ Flow correlations

- Why use the correlation between v_2 and (p_T) ?
 - Disentangle role of geometric response and IC
 - Shape and elliptic flow: v₂;
 - size/expansion/radial flow: (p_T)
- Tested against state-of-the-art model:
 - IP-Glasma + MUSIC + UrQMD
 - With and without Initial Momentum Anisotropy
- Simple geometric picture does not explain results
- Predictions far from measurement at low multiplicity
 - Radial vs elliptic flow mismatch?
 - → breakdown of hydro picture?

→ see Mingrui Zhao's talk

Experimentally, focus on:

- I. In-depth study of flow correlations
- 2. Rapidity as a tool for 3D dynamics
 - Correlate longitudinal direction? Geometry / causality / time
- 3. Look for extremes: e^+e^- , γA , BES / low E
- 4. Understanding the hard/soft interplay

Flow decorrelation vs pseudorapidity: p-Pb

- → see Mingrui Zhao's talk
- √ Flow correlations
- √ 3D dynamics

- Correlate v_2 and pseudorapidity
- Longitudinal correlations → not well reproduced by AMPT

✓ Flow correlations✓ 3D dynamics

Flow decorrelation vs pseudorapidity: pp vs AA

https://arxiv.org/abs/2308.16745

- F_n : quantifies (non-flow-subtracted) n-th flow coefficient decorrelation versus rapidity
- Large decorrelation factors that are N_{ch} -independent (pp) and decrease (Xe-Xe)
- Not reproduced well by AMPT, except perhaps qualitatively in AA
 - → sub-nucleonic structure and fluctuations in longitudinal energy deposition in pp are needed

Longitudinal dynamics from directed flow

- Directed flow measured over large pseudorapidity range by STAR in BES
- Fundamental input for hydro modeling
 - BES: also potentially relevant for switch in dynamics (more later!)

→ see talk by Xiaoyu Liu

✓ Flow correlations✓ 3D dynamics

LHCb: measuring (very) forward flow in Pb-Pb

- Elliptic flow coefficient measured by LHCb: first very forward acceptance results in Pb-Pb
- Further constraint to full three-dimensional hydrodynamical modeling

→ See talk by Cheuk Ping Wong

Experimentally, focus on:

- I. In-depth study of flow correlations
- 2. Rapidity as a tool for 3D dynamics
- 3. Look for extremes: e^+e^- , γA , BES / low E
 - Search for a 'breaking point' and for limits of validity
- 4. Understanding the hard/soft interplay

ALICE: mass ordering in p-Pb

√ Specific processes/extremes

- Mass ordering observed at low transverse momentum
 - Now measured with 2pc correlations
 - Non-flow under better control
 - Consistent with hydro-like behaviour
- Baryon/meson grouping at intermediate p_T
 - Matches observations from other systems
- Begs the question:
 - how far can we push the usual patterns?
 - Small systems at RHIC energies?

v₂ in small collision systems at RHIC top energies

√ Specific processes/extremes

• → see <u>Biörn Schenke's talk</u>

0.1

Identified particle v₂ vs collision energy

- √ Specific processes/extremes
 - → See Zuowen Liu's talk

- Regime change also observed around 3.2 GeV
- Switchover between out-of-plane and in-plane flow
 - -Spectators affect particles emitted from interaction
- Larger energies:
 - regime of progressively more intense in-plane flow from collective expansion / geometry

v₂ NCQ scaling: search for breakdowns

- √ Specific processes/extremes
 - → See <u>Zuowen Liu's talk</u>

- STAR BES observation: NCQ scaling of v₂
 - -...is followed in Au+Au at 14.6 GeV

v₂ NCQ scaling: search for breakdowns

√ Specific processes/extremes

- STAR BES observation: NCQ scaling of v₂
 - -...is followed in Au+Au at 14.6 GeV
 - -...but breaks down at 3.2 GeV: hadronic vs partonic regime

HADES: observation of low-energy collectivity

- √ Specific processes/extremes
- √ 3D dynamics

- STAR BES information on collectivity complementary to HADES measurements
- High precision measurements from HADES constrain proton / deuteron / triton v₂
 - Access also rapidity dimension → serves as further constraint to theory

Observation of non-zero flow in photo-nuclear events

√ Specific processes

- Ultra-peripheral collisions: photonuclear processes
 - High-multiplicity events selected for analysis
 - Non-zero v₂,
 - ...but lower than hadron-hadron collisions!
- Similar to result by CMS [2] in γ p interactions (in p-Pb)
- Can be explained using CGC predictions [1]
- Caveat: v₂ coefficients vulnerable to (residual) non-flow
- Begs the question: can we characterize these collisions?
 - What about other QGP signatures?
 - [1] Phys. Rev. D **103**, 054017
 - [2] https://arxiv.org/abs/2204.13486

 \rightarrow see talk by <u>Sruthy Das</u>

Search for QGP signatures in photo-nuclear events

√ Specific processes/extremes

- Indications of radial flow in UPC collisions
 - In backward pseudorapidity region
 - Excess not described well by AMPT

→ see talk by <u>Sruthy Das</u>

Search for QGP signatures in photo-nuclear events

✓ Specific processes/extremes

- Indications of radial flow in UPC collisions
 - In backward pseudorapidity region
 - Excess not described well by AMPT
- Backward $\eta \langle p_T \rangle$ matches p-Pb at the same multiplicities

 \rightarrow see talk by <u>Sruthy Das</u>

√ Specific processes/extremes

- Minimum-bias e^+e^- collisions: exhibit no near-side ridge
- However: e^+e^- provides access to various processes

✓ Specific processes/extremes

- Minimum-bias e^+e^- collisions: exhibit no near-side ridge
- However: e^+e^- provides access to various processes
 - -High-multiplicity e^+e^- enriched with $e^+e^- \rightarrow W^+W^-$: a two-string system

√ Specific processes/extremes

- Minimum-bias e^+e^- collisions: exhibit no near-side ridge
- However: e^+e^- provides access to various processes
 - -High-multiplicity e^+e^- enriched with $e^+e^- \rightarrow W^+W^-$: a two-string system

√ Specific processes/extremes

- Minimum-bias e^+e^- collisions: exhibit no near-side ridge
- However: e^+e^- provides access to various processes
 - -High-multiplicity e^+e^- enriched with $e^+e^- \rightarrow W^+W^-$: a two-string system
 - -Results at high multiplicity similar to pp collisions!

Experimentally, focus on:

- I. In-depth study of flow correlations
- 2. Rapidity as a tool for 3D dynamics
- 3. Look for extremes: e^+e^- , γA , BES / low E
- 4. Understanding the hard/soft interplay
 - Understand how phenomena such as jets and others connect to flow

Correlation between elliptic flow and jets in pp collisions

- √ Flow correlations
- √ Hard/soft interplay
- Basic question: is there any relationship between jets and the presence of collective effects (v₂) in pp?
- ATLAS measurement indicates:
 - No significant change in the v_2 of the underlying event with the absence / presence of a jet
 - Consistently, hadron-jet correlation indicates negligible v₂
- Independence is interesting but could potentially depend on phase space (jet momentum)
 - Consideration: soft / hard correlations?
 - Appears elsewhere in pheno discussions, etc

→ see talk by Soumya Mohapatra

- √ Flow correlations
- √ Hard/soft interplay

Flow in individual jets?

→ See <u>talk by Parker Gardner</u>

- Elliptic flow with respect to jet axis anomalously high for high N_{ch}^{J}
- Possibly a sign of collectivity in jets?

Hyperon polarization and collectivity

- → see talk by Xingrui Gou
- Hydrodynamic flow impinges polarization to hyperons

Hyperon polarization and collectivity

→ see talk by Xingrui Gou

- √ Flow correlations
- √ 3D dynamics
- √ Hard/soft interplay

- Hydrodynamic flow impinges polarization to hyperons
- Now: first observation of polarization wrt third-order event plane
- Other directions of polarization studies being explored: hard/soft interplay and jet quenching (see Willian Serenone's talk)

Summary

- The classical collectivity picture is being expanded experimentally
 - -Generically, our descriptions work! But... a few puzzles remain:
 - Flow correlations → disentangle different dynamic origins of flow (IC, etc)
 - Still something to be understood to unify radial and elliptic flow
 - Rapidity and 3D dynamics → characterise and confront with 3D hydro / other theory
 - Rapidity dependence of correlations still presents a challenge
 - -Specific regimes / processes → stress-testing / breaking the usual picture: small systems, etc
 - Hadronic and photonuclear collisions of sufficient energy follow usual patterns; BES results present new frontier
 - -Soft / hard interplay → less compartmentalization, consistent theory required
 - Exciting new directions: relationship between jets and soft physics, small systems puzzle, new ideas
 - Disclaimer: this was just a selection!
 - -More news incoming! BES, LHC Run 3+, and beyond
- New measurements present new theoretical challenges! → see next talk

