EXPERIMENTAL RESULTS ON THE SEARCH FOR THE QCD CRITICAL ENDPOINT

Ashish Pandav (Lawrence Berkeley National Laboratory)
September 7, 2023

QM2023Houston, Texas
Sep 3 -9, 2023

Outline

- 1. Introduction
- 2. Observables
- 3. Experimental analysis and results
- 4. Future prospects and challenges
- 5. Summary

INTRODUCTION: PHASE TRANSITION

- □ Underlying interaction electromagnetic
- ☐ Precise understanding available

INTRODUCTION: QCD PHASE DIAGRAM

- B. Mohanty, N. Xu, arXiv:2101.09210
- ☐ Underlying interaction: strong force (QCD)
- ☐ Largely conjectured

INTRODUCTION: QCD CRITICAL POINT (CP) FROM THEORY

- Lattice calculations at high μ_B suffer from sign problem
- Effective models have several underlying assumptions/ approximations

 \Box Theory predictions vary wildly in μ_B-T plane. **Experimental search very important.**

INTRODUCTION: EXPERIMENTALLY ACCESSING PHASE DIAGRAM

B. Mohanty, N. Xu, arXiv:2101.09210, A. Pandav, D. Mallick, B. Mohanty, PPNP. 125, 103960 (2022)

P. Braun-Munzinger, J. Stachel, Nature 448 (2007) 302

- \Box Varying collision energy, impact parameter, rapidity acceptance, collision species, varies \Box and μ_B of system created
- ☐ Study energy/centrality/rapidity/species dependence of CP sensitive observables

OBSERVABLES FOR CP SEARCH (SELECTED):

Observable	Definition	Comments
Particle ratio fluctuation $ u_{dyn}$	$\frac{\langle N_x(N_x - 1) \rangle}{\langle N_x \rangle^2} + \frac{\langle N_y(N_y - 1) \rangle}{\langle N_y \rangle^2} - 2 \frac{\langle N_x N_y \rangle}{\langle N_x \rangle \langle N_y \rangle}$	Look for non-monotonic collision energy dependence
Momentum correlation $<\Delta p_{T,i}\Delta p_{T,j}>$	$\frac{1}{N_{ev}} \sum_{k=1}^{N_{ev}} \frac{C_k}{N_k(N_k - 1)}$ $C_k = \sum_{i=1}^{N_k} \sum_{j=1, j \neq i}^{N_k} (p_{T,i} - \langle M(p_T) \rangle)(p_{T,j} - \langle M(p_T) \rangle)$	Look for non-monotonic collision energy dependence
Intermittency: Scaled factorial mom. $F_q(M)$	$ \frac{<\frac{1}{M^2} \sum_{i=1}^{M^2} n_i (n_i - 1) \dots (n_i - q + 1) >}{<\frac{1}{M^2} \sum_{i=1}^{M^2} n_i >} $	Look for scaling behavior of factorial moments w.r.t bin size M
Femtoscopic correlation function $C(k^*)$	$N \frac{A(k^*)}{B(k^*)}$	Look for power law scaling of correlation function
Cumulants of conserved charge C_n	$C_1 = \langle n \rangle, C_2 = \langle \delta n^2 \rangle$ $C_3 = \langle \delta n^3 \rangle$ $C_4 = \langle \delta n^4 \rangle - 3 \langle \delta n^2 \rangle^2$	Look for non-monotonic collision energy dependence

OBSERVABLES FOR CP SEARCH (SELECTED):

Observable	Definition	Comments
Particle ratio fluctuation $ u_{dyn} $	$\frac{\langle N_x(N_x - 1) \rangle}{\langle N_x \rangle^2} + \frac{\langle N_y(N_y - 1) \rangle}{\langle N_y \rangle^2} - 2 \frac{\langle N_x N_y \rangle}{\langle N_x \rangle \langle N_y \rangle}$	Look for non-monotonic collision energy dependence
Momentum correlation $<\Delta p_{T,i}\Delta p_{T,j}>$	$\frac{1}{N_{ev}} \sum_{k=1}^{N_{ev}} \frac{C_k}{N_k(N_k - 1)}$ $C_k = \sum_{i=1}^{N_k} \sum_{j=1, j \neq i}^{N_k} (p_{T,i} - \langle M(p_T) \rangle)(p_{T,j} - \langle M(p_T) \rangle)$	Look for non-monotonic collision energy dependence
Intermittency: Scaled factorial mom. $F_q(M)$	$<\frac{1}{M^{2}}\sum_{i=1}^{M^{2}}n_{i}(n_{i}-1)\dots(n_{i}-q+1)> \ ext{New data on }F_{q}(M_{s})$, $C(k^{*})$	Look for scalling behavior of factorial moments w.r.t bin size M
Femtoscopic correlation function $C(k^*)$	B.Porfy (NA61/SHINE): Talk (Wedr	power law scaling of correlation function
Cumulants of conserved charge C_n	$C_1 = \langle n \rangle, C_2 = \langle \delta n^2 \rangle$ $C_3 = \langle \delta n^3 \rangle$ $C_4 = \langle \delta n^4 \rangle - 3 \langle \delta n^2 \rangle^2$	Look for non-monotonic collision energy dependence

OBSERVABLES FOR CP SEARCH (SELECTED):

Observable	Definition	Comments
Particle ratio fluctuation $ u_{dyn} $	$\frac{\langle N_x(N_x - 1) \rangle}{\langle N_x \rangle^2} + \frac{\langle N_y(N_y - 1) \rangle}{\langle N_y \rangle^2} - 2 \frac{\langle N_x N_y \rangle}{\langle N_x \rangle \langle N_y \rangle}$	Look for non-monotonic collision energy dependence
Momentum correlation $<\Delta p_{T,i}\Delta p_{T,j}>$	$\frac{1}{N_{ev}} \sum_{k=1}^{N_{ev}} \frac{C_k}{N_k(N_k - 1)}$ $C_k = \sum_{i=1}^{N_k} \sum_{j=1, j \neq i}^{N_k} (p_{T,i} - \langle M(p_T) \rangle)(p_{T,j} - \langle M(p_T) \rangle)$	Look for non-monotonic collision energy dependence
Intermittency: Scaled factorial mom. $F_q(M)$	$ < \frac{1}{M^2} \sum_{i=1}^{M^2} n_i (n_i - 1) \dots (n_i - q + 1) > $ $ < \frac{1}{M^2} \sum_{i=1}^{M^2} n_i > $	Look for scaling behavior of factorial moments w.r.t bin size M
Femtoscopic correlation function $C(k^*)$	$N \frac{A(k^*)}{B(k^*)}$	Look for power law scaling of correlation function
Cumulants of conserved charge C_n	$C_1 = \langle n \rangle, C_2 = \langle \delta n^2 \rangle$ $C_3 = \langle \delta n^3 \rangle$ $C_4 = \langle \delta n^4 \rangle - 3 \langle \delta n^2 \rangle^2$	Theory calculation available Look for non-monotonic collision energy dependence

CUMULANTS:

• Cumulants: n = conserved charge number (net-baryon) in an event

$$C_1 = \langle n \rangle$$

$$C_2 = \langle \delta n^2 \rangle \qquad *\delta n = n - \langle n \rangle$$

$$C_3 = \langle \delta n^3 \rangle$$

$$C_4 = \langle \delta n^3 \rangle$$

$$C_{c} = \langle \delta n^{6} \rangle - 15 \langle \delta n^{4} \rangle \langle \delta n^{2} \rangle - 10 \langle \delta n^{3} \rangle^{2} + 30 \langle \delta n^{2} \rangle$$

Kurtosis: Peakedness

• Factorial cumulants (irreducible correlation function):

$$\kappa_1 = C_1$$

$$\kappa_2 = -C_1 + C_2$$

$$\kappa_3 = 2C_1 - 3C_2 + C_3$$

$$\kappa_4 = -6C_1 + 11C_2 - 6C_3 + C_4$$

$$\kappa_5 = 24C_1 - 50C_2 + 35C_3 - 10C_4 + C_5$$

$$\kappa_6 = -120C_1 + 274C_2 - 225C_3 + 85C_4 - 15C_5 + C_6$$

Note convention: STAR experiment:

Cumulants (C_n) and Factorial cumulants (κ_n)

Theory and other experiments:

Skewness: Asymmetry

Cumulants (κ_n) and Factorial cumulants (C_n)

More on comparison of factorial cumulants vs theory:

V. Vovchenko: Plenary talk (Today)

CUMULANTS AND CP SEARCH:

Related to correlation length: $C_2 \sim \xi^2$, $C_4 \sim \xi^7$ Finite size/time effects reduces ξ Higher order \longrightarrow more sensitivity

Related to susceptibilities:
$$\frac{C_{4q}}{C_{2q}} = \frac{\chi_4^q}{\chi_2^q}, \frac{C_{6q}}{C_{2q}} = \frac{\chi_6^q}{\chi_2^q}$$

Direct comparison with lattice QCD, HRG, QCD-based model calculations

M. A. Stephanov, Phys.Rev.Lett. 107 (2011) 052301

Assumption: Thermodynamic equilibrium

Non-monotonic $\sqrt{s_{NN}}$ dependence of C_4/C_2 of conserved quantity - existence of a critical region

CUMULANTS AND CP SEARCH:

Establish crossover and first-order P.T. -> CP exists

Sign of net-baryon C_5/C_1 and C_6/C_2 :

- < 0 Lattice QCD/FRG includes crossover
- > 0 HRG and UrQMD no QCD transition

A. Bzdak and V. Koch, PRC100, 051902(R) (2019)

Bimodal multiplicity distribution near **1st order P.T.** - Large factorial cumulants κ_n alternating sign with increasing order

STRATEGY:

Towards making the QCD phase diagram a reality

Perform collisions of nuclei to produce and study QCD matter				
☐ Check if produced system is governed by thermodynamics				
\square Experimentally establish crossover at small μ_B				
\square Search for signatures of 1st order P.T. at large μ_B				
☐ Search for signatures of QCD critical point				

ACTIVE EXPERIMENTS FOR CP SEARCH:

Overview talks:

S. Spies (HADES)
P. Podlaski (NA61/SHINE)
R. Reed (STAR)
I.C. Arsene (ALICE)

Experiment	Facility	Mode	Colliding energy $(\sqrt{s_{NN}})$	Systems* *Not all are listed
HADES	SIS18	FXT	2.32 - 2.7 GeV	Au+Au, Ag+Ag, C+C, p+p
NA61/ SHINE	SPS	FXT	5.1 - 17.3 GeV	Pb+Pb, Be+Be, Ar+Sc, p+p
STAR	RHIC	COL/ FXT	3 - 200 GeV	Au+Au, U+U, Zr+Zr, Ru+Ru, Cu+Cu, d+Au, He3+Au, p+Au, p+p
ALICE	LHC	COL	2.76 - 13 TeV	Pb+Pb, Xe+Xe, p+Pb, p+p

ANALYSIS DETAILS:

Use net-proton as proxy for net-baryon fluctuation

Event-by-event raw net-proton distribution

X. Luo et al, J.Phys. G 40, 105104 (2013), V. Skokov et al., Phys. Rev. C88 (2013) 034911 P. Braun-Munzinger et al, NPA 960 (2017)114-130

☐ Correct for detector efficiency: Binomial efficiency correction / unfolding

X. Luo , PRC 91, (2015) 034907, T. Nonaka et al, PRC 95, (2017) 064912,

X. Luo et al, PRC 99 (2019), 044917, T. Nonaka et al, NIMA906 10-17(2018)

☐ Measure statistical and systematic uncertainties: stat.err. $C_r \propto \frac{\sigma'}{\sqrt{N}}$

STRATEGY:

- Perform collisions of nuclei to produce and study QCD matter
- ☐ Check if produced system is governed by thermodynamics
- \square Experimentally establish crossover at small μ_B
- \square Search for signs of 1st order P.T. at large μ_B
- ☐ Search for signs of QCD critical point

RESULTS: STUDY OF THERMODYNAMICS

Thermal FIST: V. Vovchenko, H. Stoecker, Comp. Phys. Comm. 244, 295-301 (2019)

HRG CE ($Vc = \infty$, global cons.): P. B Munzinger et al, NPA 1008, 122141 (2021) UrQMD: STAR: PRL 130, 082301 (2023)

- ☐ Ideal HRG GCE (non-interacting): no ordering
- UrQMD no thermal equilibrium: no ordering within uncertainties
- ☐ HRG CE with baryon conservation: ordering observed at all energies
- ☐ Equilibrium+Interaction necessary for ordering of cumulant ratios

RESULTS: STUDY OF THERMODYNAMICS

Study of thermodynamics: Net-baryon $C_3/C_1 > C_4/C_2 > C_5/C_1 > C_6/C_2$ - Lattice

$$R_{31} = C_3/C_1$$

$$R_{42} = C_4/C_2$$

Within uncertainties, 7.7 - 200 GeV data consistent with lattice predicted hierarchy.

RESULTS: STUDY OF THERMODYNAMICS

Study of thermodynamics: Net-baryon $C_3/C_1 > C_4/C_2 > C_5/C_1 > C_6/C_2$ - Lattice

- ☐ Within uncertainties, 7.7 200 GeV data consistent with lattice predicted hierarchy.
- ☐ At 3 GeV, violation of ordering is seen. Observed ordering reproduced by UrQMD.

Perform collisions of nuclei to produce and study QCD matter Check if produced system is governed by thermodynamics Data $(\sqrt{s_{NN}} \ge 7.7 \text{ GeV or } \mu_B < 420 \text{ MeV})$ within uncertainties favors ordering expected from lattice thermodynamics. 3 GeV data violates. QCD matter out of equilibrium at 3 GeV? Experimentally establish crossover at small μ_R Search for signs of 1st order P.T. at large μ_R Search for signs of QCD critical point

STRATEGY:

RESULTS: ENERGY DEPENDENCE OF C_6/C_2

- Increasingly negative C_6/C_2 (down to 7.7 GeV) with decreasing $\sqrt{s_{NN}}$ (1.7 σ significance) sign and trend consistent with lattice QCD
- \square $C_6/C_2 > 0$ at 3 GeV, sign reproduced by UrQMD. Peripheral data > 0

30 100 300 800

Baryonic Chemical Potential μ_B (MeV)

AR: PRL 127, 262301 (2021) HRG CE: P. B Munzinger et al. NPA 1008, 13

FRG

HRG CE

UrQMD (0-40%)

STAR: PRL 127, 262301 (2021) STAR: PRL 130, 082301 (2023)

-200

HRG CE: P. B Munzinger et al, NPA 1008, 122141 (2021) LQCD: HotQCD, PRD 101, 074502 (2020)

FRG: Wei-jie Fu et. al, PRD 104, 094047 (2021)

D. Neff (STAR): Talk (Tuesday)

Results: Measurements at Vanishing μ_R

M. Ciacco (ALICE): Talk (Tuesday)

- ☐ Vanishing third order cumulant ratio consistent with LQCD and HRG calculations
- \square Cascade fluctuations: string fragmentation model fails, data explained by HRG with conservation $V_c = 3dV/dy$. Presence of long-range rapidity correlations.

Perform collisions of nuclei to produce and study QCD matter Check if produced system is governed by thermodynamics Data $(\sqrt{s_{NN}} \ge 7.7 \text{ GeV or } \mu_B < 420 \text{ MeV})$ within uncertainties favors ordering expected from lattice thermodynamics. 3 GeV data violates. QCD matter out of equilibrium at 3 GeV? \perp Experimentally establish crossover at small μ_R Observed sign and trend in data ($\sqrt{s_{NN}} \ge 7.7$ GeV) consistent with calculations from lattice QCD (μ_B < 110 MeV) with a crossover at $O(\sim 1\sigma)$ significance level. Search for signs of 1st order P.T. at large μ_B Search for signs of QCD critical point

STRATEGY:

RESULTS: PROTON FACTORIAL CUMULANTS

Two-component distribution: Large factorial cumulants with alternating sign

- □ For $\sqrt{s_{NN}} \ge 11.5$ GeV, the proton κ_n within uncertainties does not support the two-component shape of proton distributions expected near a 1st order P.T.
- ☐ Precision measure necessary to see trends clearly at low energies.

STRATEGY: Perform collisions of nuclei to produce and study QCD matter Check if produced system is governed by thermodynamics Data ($\sqrt{s_{NN}} \ge 7.7$ GeV or $\mu_B < 420$ MeV) within uncertainties favors ordering expected from lattice thermodynamics. 3 GeV data violates. QCD matter out of equilibrium at 3 GeV? \square Experimentally establish crossover at small μ_R Observed sign and trend in data ($\sqrt{s_{NN}} \ge 7.7$ GeV) consistent with calculations from lattice QCD (μ_B < 110 MeV) with a crossover at $O(\sim 1\sigma)$ significance level. Search for signs of 1st order P.T. at large μ_R Data $(\sqrt{s_{NN}} > 7.7 \text{ GeV})$ within uncertainties suggest absence of any bimodal structure expected near 1st order phase transition. Precision measurement from low energy important. Search for signs of QCD critical point

RESULTS: LIGHT NUCLEI FLUCTUATION

Light nuclei yield and fluctuations: sensitive to local density fluctuation near CP

- ☐ Fluctuations of deuteron explained by HRG CE and UrQMD+Coalescence model
- ☐ Light nuclei ratio: $N_t \times N_p/N_d^2$ shows deviations around $\sqrt{s_{NN}} = 19$ and 27 GeV Investigation ongoing to link the observation in regards CP search

RESULTS: NET-PROTON FLUCTUATIONS

Most Central Au+Au collisions Net-proton $0.4 < p_{\perp} < 2.0 \text{ GeV/c, lyl} < 0.5$ STAR Data Projected BES-II stat. uncertainty , **⊕** UrQMD ---- HRG CE 20 50 200 10 100 Collision Energy √s_{NN} (GeV)

Net-proton κσ²

HADES: PRC 102, 024914 (2020) STAR: PRL 127, 262301 (2021) STAR: PRL 128, 202302 (2022)

HRG CE: P. B Munzinger et al, NPA 1008, 122141 (2021)

□ Non-monotonic collision energy dependence observed for net-proton C_4/C_2 at 3.1σ level − consistent with CP expectation. Non-CP models fail to reproduce the observed trend □ Suppression observed at $\sqrt{s_{NN}} = 3$ GeV ($\mu_B = 750$ MeV), consistent with hadronic baseline □ Precision measurement from BES-II ongoing

STRATEGY: Perform collisions of nuclei to produce and study QCD matter Check if produced system is governed by thermodynamics Data $(\sqrt{s_{NN}} \ge 7.7 \text{ GeV or } \mu_B < 420 \text{ MeV})$ within uncertainties favors ordering expected from lattice thermodynamics. 3 GeV data violates. QCD matter out of equilibrium at 3 GeV? Less Experimentally establish crossover at small μ_R Observed sign and trend in data ($\sqrt{s_{NN}} \ge 7.7$ GeV) consistent with calculations from lattice QCD (μ_B < 110 MeV) with a crossover at $O(\sim 1\sigma)$ significance level. \square Search for signs of 1st order P.T. at large μ_R Data ($\sqrt{s_{NN}}$ > 7.7 GeV) within uncertainties suggest absence of any bimodal structure expected near 1st order phase transition. Search for signs of QCD critical point Non-monotonic energy dependence observed in data around (7.7 - 27 GeV) within $\lesssim 3\sigma$ level, consistent with model expectation with a CP. Precision measurement ongoing

NEW MEASUREMENTS AT QM:

Study QGP formation and initial magnetic field in HI collisions: off diagonal cumulants

V. Koch et al: PRL95, 182301 (2005) LQCD: PRD 104, 074512 (2021)

T. Nonaka (ISMD 2023)

 C_{BS} (200 GeV) < 1, close to lattice QCD C_{BS} (3 GeV) > 1, reproduced by UrQMD

Y. Zhang (STAR): Poster (Tuesday)

Presence of B field: Look for increasing trend (peak structures) in centrality dependence of diagonal (off diagonal) cumulants H.T. Ding et al, EPJA 57.202 (2021), arXiv:2208.07285 Net-proton data in line with lattice expectation. Model studies needed. Off-diagonal cumulants also measured: trend reproduced by HRG CE.

I. Fokin (ALICE): Poster (Tuesday) S. Saha (ALICE): Poster (Tuesday)

STATUS THUS FAR,

Recent lattice studies at finite μ_R :

A. Pasztor (Lattice overview)

NCQ scaling:

R. Reed (STAR): overview
I.C. Arsene (ALICE): overview
A. Angerami (CMS):overview

- Hint of non-monotonic trend (3.1 σ level) around $\sqrt{s_{NN}} = 7.7 27$ GeV (**BES-II data to confirm**)
- Crossover at $\sqrt{s_{NN}} \ge 39$ GeV ($\mu_B \le 110$ MeV): Lattice QCD, interesting trends also seen in data
- Data falling to hadronic baseline at $\sqrt{s_{NN}}$ = 3 GeV (μ_B = 720 MeV): hadronic interactions dominant (observation supported by breakdown of NCQ scaling)
- CP (if present and accessible in collisions) is expected between $\sqrt{s_{NN}} = 3 39$ GeV

FUTURE PROSPECTS

PRECISION MEASUREMENTS

BES-II upgrade

https://drupal.star.bnl.gov/STAR/starnotes/public/sn0598

STAR-FXT: Z. Sweger (STAR): Poster (Tuesday)

acceptance at mid rapidity challenging at high $\sqrt{s_{NN}}$

10-20X increase in statistics for

$$Au + Au (\sqrt{s_{NN}} = 3 - 27 \text{ GeV})$$

Detector upgrades: iTPC, EPD, eTOF

Wide acceptance: $|\eta| < 1.6$

LHC Run3 upgrade

CERN-LHCC-2022-009

More than 50X increase in statistics

Detector upgrades: TPC, ITS, FIT

Wide acceptance: $|\eta| < 4$

Wide acceptance- Rapidity scan for CP search Rapidity is a finer-resolution

probe of the critical regime than $\sqrt{s_{NN}}$

J. Brewer et. al., PRC 98, 061901 (2018)

Most Central Au+Au collisions Net-proton $0.4 < p_{_{\rm T}} < 2.0 \text{ GeV/c, lyl} < 0.5$ STAR Data Projected BES-II stat. uncertainty BES-II (9.2 and 17.3 GeV new addition) ,**小** UrQMD HRG CE 100 200 STAR: PRL 128, 202302 (2022) HADES: PRC 102, 024914 (2020)

Collision Energy

CBM to take Au+Au data (2028): $\sqrt{s_{NN}} = 2.4 - 4.9 \text{ GeV}^2$

C. Hohne (CBM): Talk (Wednesday)

NA60+: G. Alocco (NA60+): Talk (Wednesday)

31

2. Study crossover at STAR and LHC with C_6 and C_8

STAR: Au+Au at $\sqrt{s_{NN}}$ = 200 GeV: ~ 20 billion event (2023+2025) Au+Au at $\sqrt{s_{NN}}$ = 3 GeV: ~ 2 billion events collected ALICE: Higher order measurements possible with high statistic LHC Run3

HotQCD: PRD101, 074502 (2020), S. Borsanyi et al, JHEP10 (2018) 205, B. Friman et al, EPJC 71, 1694 (2011)

CHALLENGES

UNDERSTANDING DYNAMICS OF SYSTEM IN HI COLLISIONS

INITIAL VOLUME FLUCTUATION EFFECTS:

STAR: PRC 107, 024908 (2023)

☐ Initial volume fluctuation effect significant at low $\sqrt{s_{NN}}$ Low collision energy: low charged particle multiplicity - poor centrality resolution ☐ Look for alternate way to obtain $< N_{part} >$ in experiments.

A. Rustamov: Poster (Tuesday)

A new method for correcting VF

CONCLUSION:

- ☐ Currently available data and theories suggest CP could be within $\sqrt{s_{NN}} = 3 39$ GeV (subjected to its existence and accessibility in nuclear collision)
- ☐ BES-II analysis and upcoming experimental programs at high baryon density underway
- ☐ Exciting times ahead. Stay tuned

ACKNOWLEDGEMENTS:

Alphabetically: Xin Dong, ShinIchi Esumi, Yige Huang*, Ho-San Ko*, Xiaofeng Luo, Debasish Mallick*, Bedanga Mohanty, Dylan Neff*, Risa Nishitani*, Bappaditya Mondal*, Toshihiro Nonaka, Grazyna Odyniec, Zachary Sweger*, Volodya Vovchenko, Yongcong Xu*, Nu Xu, Xin Zhang*, Yu Zhang*. * PhDs/postdocs

STAR Collaboration members, RNC group at LBNL

And organizers for the opportunity. Thank you all.

BACK UP

RESULTS: STUDY OF THERMALIZATION

Thermal FIST: V. Vovchenko, H. Stoecker, Comp. Phys. Comm. 244, 295-301 (2019)

HRG CE Global conservation: P. B Munzinger et al, NPA 1008, 122141 (2021) UrQMD: STAR: PRL 130, 082301 (2023)

- ☐ Ideal HRG GCE (non-interacting): no ordering
- UrQMD no thermal equilibrium: no ordering within uncertainties
- ☐ HRG GCE EV and HRG CE with baryon conservation: ordering observed at all energies
- ☐ Equilibrium+Interaction necessary for ordering of cumulant ratios