# QCD at Finite Temperature and Density - Equation of State



Jamie M. Karthein, MIT NSF ASCEND Postdoctoral Fellow





Quark Matter 2023, Houston

# QCD Phase Diagram



- ➤ Familiar QCD phase diagram shows the features of strongly interacting matter under conditions of heat & compression
- Experimental program from RHIC covers large range in μ<sub>B</sub>
- ► Understand phase diagram, including transition line  $T(\mu_B)$ 
  - → knowledge of the equation of state (EoS)
- > Equilibrium thermodynamic quantities



# Equation of State: Crucial Thermodynamic Input



- ➤ Knowledge of the equation of state of strongly-interacting matter in equilibrium is crucial for:
  - > Fluctuations, via derivatives of the pressure
  - > The hadronic spectrum, i.e. the species present at freeze-out, via partial pressures
  - Hadronic transport simulations
  - Hydrodynamic simulations
  - Neutron star merger simulations
  - The interior composition of neutron stars
  - > The behavior of the speed of sound





#### Fluctuations & Equation of State



➤ Equilibrium fluctuations are calculated from knowledge of the equation of state

$$\chi_{lmn}^{BSQ} = \frac{\partial^{l+m+n}(p/T^4)}{(\partial \mu_B/T)^l(\partial \mu_S/T)^m(\partial \mu_Q/T)^n}$$

$$M = \chi_1 \qquad \sigma^2 = \chi_2$$

$$S = \chi_3/\chi_2^{3/2} \qquad \kappa = \chi_4/\chi_2^2$$





$$\frac{p(T,\mu_B)}{T^4} = \frac{p(T,0)}{T^4} + \sum_{n=1}^{\infty} \frac{1}{(2n)!} \frac{\mathrm{d}^{2n}(p/T^4)}{d(\frac{\mu_B}{T})^{2n}} \bigg|_{\mu_B=0} \left(\frac{\mu_B}{T}\right)^{2n} = \sum_{n=1}^{\infty} \frac{1}{(2n)!} \frac{\chi_{2n}^B}{\chi_{2n}^B} \left(\frac{\mu_B}{T}\right)^{2n}$$

> Taylor expansion coefficients give the fluctuations & correlations of conserved charges

## Equation of State Definition



➤ Equilibrium thermodynamics calculated from first principles lattice QCD computations are well-established with good agreement amongst techniques

$$\frac{p(T,\mu_B)}{T^4} = \frac{p(T,0)}{T^4} + \sum_{n=1}^{\infty} \frac{1}{(2n)!} \frac{\mathrm{d}^{2n}(p/T^4)}{d(\frac{\mu_B}{T})^{2n}} \bigg|_{\mu_B=0} \left(\frac{\mu_B}{T}\right)^{2n} = \sum_{n=1}^{\infty} \frac{1}{(2n)!} \frac{\chi_{2n}^B}{\chi_{2n}^B} \left(\frac{\mu_B}{T}\right)^{2n}$$

Charge density: 
$$\frac{n_i}{T^3} = \frac{1}{T^3} \left( \frac{\partial p}{\partial \mu_i} \right) \Big|_{T,\mu_j}$$
 5 Energy density: 
$$\frac{\epsilon}{T^4} = \frac{s}{T^3} - \frac{p}{T^4} + \sum_i \frac{\mu_i}{T} \frac{n_i}{T^3} \Big|_{3}$$
 Entropy density: 
$$\frac{s}{T^3} = \frac{1}{T^3} \frac{\partial p}{\partial T} \Big|_{3}$$







A. Bazavov PRD (2014), S. Borsanyi PLB (2014)

## QCD Phase Diagram - What We Know





- ➤ Besides results at zero/small  $\mu_B$  from lattice QCD describing HIC matter, the dense matter EoS is under study
- ➤ Many open questions remain about the phase diagram of QCD:
  - Is there a critical point? If so, where?
  - Where is the transition line at high density?
  - What are the degrees of freedom in the vicinity of the phase transition?



A. Lovato, T. Dore, R.D. Pisarski, J.M. Karthein et al, arXiV: 2211.02224

#### QCD Phase Diagram - How We Know It



➤ Constraints on the equation of state from first principles results + astrophysical observations + terrestrial experiments

- ➤ Low density, high temperature regime: lattice QCD (sign problem) & heavy-ion collisions
- Low temperature, high density regime: Chiral EFT, low energy nuclear experiments, neutron stars & their mergers
- Asymptotic regime: pQCD



R, Kumar, V. Dexheimer, J.M. Karthein et al, arXiv:2303.17021

# QCD Phase Diagram - How We Fill in the Gaps



➤ Because we are interested in the transition region of the phase diagram, we must extend across these regimes to fill out the phase diagram

➤ Approach of MUSES collaboration: merge lattice QCD equation of state with other effective theories

- Careful study of their respective ranges of validity
- Constrain the parameters to reproduce known limits
- ➤ Test different possibilities to validate/ exclude them





Figure by C. Ratti

#### Outline



- I. QCD Phase Diagram along  $\mu_B = 0$ 
  - Lattice QCD
  - Hadronic Gas
  - EoS for Heavy-ion Collisions
- II. QCD Phase Diagram along T = 0
  - Chiral EFT & pQCD
  - Extracting dense matter EoS
  - Neutron stars & heavy-ion collisions



#### Outline



- I. QCD Phase Diagram along  $\mu_B = 0$ 
  - Lattice QCD
  - Hadronic Gas
  - EoS for Heavy-ion Collisions
- II. QCD Phase Diagram along T = 0
  - Chiral EFT & pQCD
  - Extracting dense matter EoS
  - Neutron stars & heavy-ion collisions



#### Lattice QCD Results



A. Pásztor Mon., P. Parotto Tues., C.H. Wong Tues., R. Kara Wed., D. Clarke Wed.

- > State-of-the-art lattice calculations on the QCD equation of state for first-principles ground truth for zero and low to moderate  $\mu_B$ 
  - Continuum limit for traditional methods

New methods being explored

Direct  $\mu_B$  simulations

Extrapolated to finite  $\mu_B$ 

WB:  $i\mu_B$ , alternative expansion method

WB: reweighting method



HotQCD: Taylor method





#### Hadron Resonance Gas Update



J. Salinas San Martin Poster

- ➤ The low temperature thermodynamics is well-described by the Hadron Resonance Gas model but hadronic spectrum still unknown
  - > Update list of resonances from Particle Data Group (PDG)
  - ➤ Improved agreement with lattice when including more states: PDG2021+
  - Decays compatible with SMASH

Updates mainly to strange sector, including newly measured  $\Omega$  baryon





B-field effects: G. Mukherjee Poster

J. Salinas San Martin, R. Hirayama, J. Hammelmann, **J.M. Karthein** et al, arXiv:2309.01737

#### Interacting Hadron Resonance Gas



- ➤ Probe the hadronic phase: beyond additional states, also investigate interactions that improve agreement with lattice
- ➤ Include repulsive interactions for baryons & antibaryons:

$$p_{B(\bar{B})}^{\text{EV}} = \frac{T}{b} W[b \sum_{i \in B} \frac{m_i^2 T^2}{2\pi^2} K_2(m_i/T) \exp(\pm \mu_i/T)] = \frac{T}{b} W(\varkappa_B)$$



Need specific quantities that are sensitive to excluded volume:

$$\frac{\chi_4^B}{\chi_2^B} = \frac{\chi_{31}^{BS}}{\chi_{11}^{BS}} = \frac{\chi_{31}^{BQ}}{\chi_{11}^{BQ}} = \frac{1 - 8W(\varkappa_B) + 6[W(\varkappa_B)]^2}{[1 + W(\varkappa_B)]^4}$$

- weak dependence on particle spectrum
- identical EV corrections

J.M. Karthein, V. Koch, C. Ratti, V. Vovchenko, PRD (2021)

See also: D. Bollweg et al (HotQCD collaboration), PRD (2021)

#### EoS for BES



➤ Combine Lattice + HRG equation of state and incorporate universal scaling features into the QCD phase diagram from the 3D Ising Model equation of state



$$(\mathbf{r}, \mathbf{h}) \longleftrightarrow (\mathbf{T}, \mu_{\mathbf{B}}) : \frac{T - \mathbf{T_{C}}}{\mathbf{T_{C}}} = \mathbf{w} \left( r\rho \sin \alpha_{1} + h \sin \alpha_{2} \right)$$
$$\frac{\mu_{B} - \mu_{\mathbf{BC}}}{\mathbf{T_{C}}} = \mathbf{w} \left( -r\rho \cos \alpha_{1} - h \cos \alpha_{2} \right)$$

See also: G. Basar Tues., T. Welle Poster

➤ Reconstruct the pressure via Taylor expansion coefficients from Lattice QCD

$$T^{4}c_{n}^{\text{LAT}}(T) = T^{4}c_{n}^{\text{Non-Ising}}(T) + c_{n}^{\text{Ising}}(T)$$

$$P(T, \mu_{B}) = T^{4}\sum_{n} c_{n}^{\text{Non-Ising}}(T) \left(\frac{\mu_{B}}{T}\right)^{n} + P_{\text{crit}}^{\text{QCD}}(T, \mu_{B})$$

➤ Reduce free parameters by imposing constraints from Lattice

$$T = T_0 + \kappa T_0 \left(\frac{\mu_B}{T_0}\right)^2 + O(\mu_B^4), \qquad \alpha_1 = an^{-1} \left(2\frac{\kappa}{T_0}\mu_{BC}\right)$$

➤ Further constrain with future experimental data

P. Parotto et al, PRC (2020),
 J. M. Karthein et al, EPJ+ (2021)

#### BEST EoS Used to Calculate in Equilibrium: $\kappa_B$



 $\triangleright$  Calculate  $\kappa_B^4$  from BEST EoS to study critical lensing and effect of mapping

parameters

 $\blacktriangleright$  Small  $w, \rho \rightarrow$  smaller separation

$$\frac{d\mu_B}{d(s/n)} \sim (w\rho)r$$

Stretched in T

➤ Critical regions extending along the T-direction show a stronger signal and lensing effect



Stretched in  $\mu_B$ 

T. Dore, J.M. Karthein, D. Mroczek et al, PRD (2022)



M. Pradeep Tues.

➤ Use mapping from BEST EoS to calculate particle multiplicity fluctuations

$$\omega_{4p,\,\sigma} = \frac{6\left(2\tilde{\lambda}_3^2 - \tilde{\lambda}_4\right)}{T^2 n_p} \,\xi^7 \left(d_p \,g_p \int_{\mathbf{k}} \frac{v_{\mathbf{k}}^{p\,2}}{\gamma_{\mathbf{k}}^p}\right)^4$$

► Update equilibrium estimates from 2010 with input from universality, including new equilibrium results for correlation length to  $\mathcal{O}(\epsilon^2)$ :  $\xi^2(M,t) = R^{-2\nu}g_{\xi}(\theta)$ 

$$g_{\xi}(\theta) = g_{\xi}(0) \left( 1 - \frac{5}{18} \epsilon \theta^2 + \left[ \frac{1}{972} (24I - 25)\theta^2 + \frac{1}{324} (4I + 41)\theta^4 \right] \epsilon^2 \right) \right), \quad I \equiv \int_0^1 \frac{\ln[x(1-x)]}{1 - x(1-x)} dx$$

 Use in combination with known Ising fluctuations to extract the higher point couplings for the critical equation of state

$$\kappa_{n+1}^{\text{eq}} \propto \left(\frac{\partial^n M^{\text{eq}}(t,h)}{\partial h^n}\right)_t \qquad \kappa_2 = \langle \sigma_V^2 \rangle = VT \, \xi^2 \, ; \qquad \kappa_3 = \langle \sigma_V^3 \rangle = 2\lambda_3 V T^2 \, \xi^6$$

$$\kappa_4 = \langle \sigma_V^4 \rangle_c \equiv \langle \sigma_V^4 \rangle - 3\langle \sigma_V^2 \rangle^2 = 6V T^3 \left[ 2(\lambda_3 \xi)^2 - \lambda_4 \right] \xi^8$$

C. Athanasiou, K. Rajagopal, M. Stephanov, PRD (2010) J.M. Karthein, M. Pradeep, K. Rajagopal, M. Stephanov, Y. Yin, to appear



M. Pradeep Tues.

➤ Use mapping from BEST EoS to calculate particle multiplicity fluctuations

$$\omega_{4p,\,\sigma} = \frac{6\left(2\tilde{\lambda}_3^2 - \tilde{\lambda}_4\right)}{T^2 n_p} \,\xi^7 \left(d_p \,g_p \int_{\mathbf{k}} \frac{v_{\mathbf{k}}^{p\,2}}{\gamma_{\mathbf{k}}^p}\right)^4$$

► Update equilibrium estimates from 2010 with input from universality, including new equilibrium results for correlation length to  $\mathcal{O}(\epsilon^2)$ :  $\xi^2(M, t) = R^{-2\nu}g_{\xi}(\theta)$ 

$$g_{\xi}(\theta) = g_{\xi}(0) \left( 1 - \frac{5}{18} \epsilon \theta^2 + \left[ \frac{1}{972} (24I - 25)\theta^2 + \frac{1}{324} (4I + 41)\theta^4 \right] \epsilon^2 \right) \right), \quad I \equiv \int_0^1 \frac{\ln[x(1-x)]}{1 - x(1-x)} dx$$

 Use in combination with known Ising fluctuations to extract the higher point couplings for the critical equation of state

$$\kappa_{n+1}^{\text{eq}} \propto \left(\frac{\partial^n M^{\text{eq}}(t,h)}{\partial h^n}\right)_t \qquad \kappa_2 = \langle \sigma_V^2 \rangle = VT \, \xi^2 \, ; \qquad \kappa_3 = \langle \sigma_V^3 \rangle = 2\lambda_3 VT^2 \, \xi^6$$

$$\kappa_4 = \langle \sigma_V^4 \rangle_c \equiv \langle \sigma_V^4 \rangle - 3\langle \sigma_V^2 \rangle^2 = 6VT^3 \left[2(\lambda_3 \xi)^2 - (\lambda_4)\right] \xi^8$$

C. Athanasiou, K. Rajagopal, M. Stephanov, PRD (2010) J.M. Karthein, M. Pradeep, K. Rajagopal, M. Stephanov, Y. Yin, to appear



M. Pradeep Tues.

- ightharpoonup Re-evaluate equilibrium estimates for normalized cumulants  $\omega_{ip} \equiv \frac{\kappa_{ip}}{\langle N_p \rangle}$ with realistic critical EoS
  - ► Updates:  $\xi$ ,  $\lambda_3$ ,  $\lambda_4$  (dimensionless,  $\xi$ -independent:  $\tilde{\lambda}_3 = \lambda_3 T_{_4}^{1/2} \xi^{3/2}$ ,  $\tilde{\lambda}_4 = \lambda_4 T \xi$ )



 $\mu_B$  (MeV)

J.M. Karthein, M. Pradeep, K. Rajagopal, M. Stephanov, Y. Yin, to appear



 $\frac{p}{\sqrt{\frac{p}{\sqrt{\frac{1}{2}}}}}$  with

- ➤ Re-evaluate equilibrium estimates for normalized cumulants  $\omega_{ip} \equiv \frac{\kappa_{ip}}{\langle N_p \rangle}$  with realistic critical EoS
  - ► Updates:  $\xi, \lambda_3, \lambda_4$  (dimensionless,  $\xi$ -independent:  $\tilde{\lambda}_3 = \lambda_3 T^{1/2} \xi^{3/2}, \ \tilde{\lambda}_4 = \lambda_4 T \xi$ )



 $\mu_B$  (MeV)

Utilize to make out-ofequilibrium estimates: M. Pradeep Tues.

C. Athanasiou, K. Rajagopal, M. Stephanov, PRD (2010) J.M. Karthein, M. Pradeep, K. Rajagopal, M. Stephanov, Y. Yin, to appear

#### BEST EoS Becomes MUSES Ising-AltExs EoS



A. Pásztor Mon., M. Kahangirwe Tues.

- ➤ Initial formulation from Taylor expansion limited to  $\mu_B \le 450$  MeV
  - Utilize new lattice QCD results from an alternative expansion scheme to cover a larger  $\mu_B$  range in the phase diagram

$$T'(T, \hat{\mu}_B) = T \left( 1 + \kappa_2^{BB}(T) \hat{\mu}_B^2 + \kappa_4^{BB}(T) \hat{\mu}_B^4 + \mathcal{O}(\hat{\mu}_B^6) \right)$$

$$\kappa_2^{BB}(T) = \frac{1}{6T} \frac{\chi_4^B(T)}{\chi_2^{B'}(T)} \qquad \kappa_4^{BB}(T) = \frac{1}{360\chi_2^{B'}(T)^3} \left( 3\chi_2^{B'}(T)^2 \chi_6^B(T) - 5\chi_2^{B''}(T)\chi_4^B(T)^2 \right)$$







## Holographic Equation of State for QCD



M. Hippert Tues., J. Grefa Wed.

➤ Alternatively, study critical features in the equation of state via the strongly-coupled black-hole-engineering approach

$$S = \frac{1}{2\kappa_5^2} \int_{\mathcal{M}_5} d^5 x \sqrt{-g} \left[ R - \frac{(\partial_{\mu}\phi)^2}{2} - V(\phi) - \frac{f(\phi)F_{\mu\nu}^2}{4} \right]$$

- > Constrained to mimic the lattice QCD equation of state at zero density
- > Provides an estimate for the location of the critical point







#### Outline



- I. QCD Phase Diagram along  $\mu_B = 0$ 
  - Lattice QCD
  - Hadronic Gas
  - EoS for Heavy-ion Collisions
- II. QCD Phase Diagram along T = 0
  - Chiral EFT & pQCD
  - Extracting dense matter EoS
  - Neutron stars & heavy-ion collisions



# First-principles Dense Matter Equation of State



Theory predicts T = 0 equation of state around nuclear densities and at asymptotically high densities, while neutron stars live in between

Connect the two regimes with interpolation/regression



#### Further Thermodynamics of Dense Matter EoS



C. Sasaki Wed.

- ➤ Probe the neutron star equation of state with behavior of further quantities that affect the mass-radius curves
  - ➤ Does  $c_s^2$  exceed 1/3 conformal value?
  - > Is there a phase transition to quark matter within neutron stars?



#### Bayesian Analysis for Neutron Star EoS



T. Gorda Mon., D. Mroczek Wed.

Extract the dense matter equation of state via Bayesian studies

$$P(\text{EoS}|\text{data}) = \frac{P(\text{data}|\text{EoS})P(\text{EoS})}{P(\text{data})}$$

- Phenomenological piecewise polytropic EoSs, non-parametric Gaussian Process (GP) or modified Gaussian Process (mGP) EoSs
- Very sensitive to observational constraints/priors





#### Chiral Mean Field Model



A. Clevinger Wed., V. Dexheimer Wed., N. Cruz Camacho Poster

- ➤ Increase phase diagram coverage with model equation of state with three-flavor chiral Lagrangian for hadronic matter
  - > Include additional effects: hyperons/delta/quarks, magnetic field, chemical potentials







## Neutron Star Mergers & Heavy-ion Collisions



- ➤ Utilize the Chiral Mean Field model to study strongly-interacting matter in both binary neutron star mergers and heavy-ion collisions with  $\sqrt{s_{NN}} \sim 1.5$  GeV
  - Similar behavior for sound speed (EoS)
  - Isentropic lines probe both types of matter



HIC: symmetric matter, strangeness neutral

NS: beta-equilibrated, charge neutral

#### Simulations: BNSM v. HIC



# Neutron Star Mergers & Heavy-ion Collisions



- ➤ Utilize the Chiral Mean Field model to study strongly-interacting matter in both binary neutron star mergers and heavy-ion collisions with  $\sqrt{s_{NN}} \sim 1.5$  GeV
  - Similar behavior for sound speed (EoS)
  - Isentropic lines probe both types of matter



HIC: symmetric matter, strangeness neutral

NS: beta-equilibrated, charge neutral

#### Simulations: BNSM v. HIC



# Impact of HIC & NS on QCD Equation of State



- ➤ Many more works impacting the equation of state discussed at this conference!
- ➤ Flow L. Du Tues., Z. Liu Tues., D. Almaalol Wed., I. Karpenko Wed., X. Liu Wed., S. Rav Sharma Poster
- ➤ Femtoscopic/hyperonic correlations M. Grunwald Wed., H. Yu Wed., Posters: M. Stefaniak, M. Sharma, A. Jinno, N. Schild, A.A. Riedel, J. Ditzel, B. Heybeck, X. Li, S. Glaessel
- > Sound speed C. Bernardes Wed., N. Yao Poster
- ➤ Low energy heavy-ion collisions D. Neff Tues., C. Hoehne Wed., M. Kohl Poster
- **>** ...

#### Conclusions



➤ Exciting era in which we can combine high energy nuclear physics & nuclear astrophysics

We seek knowledge of QCD matter, not HIC or NS matter!

- ➤ MUSES will provide custom equations of state that cover any desired portion of the
  - phase diagram with user-chosen parameters
- ➤ Precise first principles results continue to help extend coverage of the phase diagram
- ➤ We look forward with anticipation to an even brighter era ahead with many new measurements/observations to come



Figure by C. Ratti

#### ASCEND Fellow Outreach



➤ NuSTEAM Summer Program



- ➤ Undergraduates spend 6 weeks in Houston on research and lectures & 2 weeks at BNL with poster presentation
- My role ('21 & '22): professional development lecturer & mentor
- ➤ Filling the G-A-P-S
  - Graduate school application workshop series for junior & senior undergraduates at MIT, spin off of MIT LEAPS
  - ➤ My role ('22-'23): one-on-one review of materials & train graduate students to teach the workshops
- ➤ Postdoc Mentor for prospective NSF ASCEND fellows

