30th conference on ultra-relativistic nucleus-nucleus collisions September 3-9, 2023 Houston, Texas, USA

Electromagnetic Probes

Raphaelle Bailhache Goethe University Frankfurt

Electromagnetic probes

Raphaelle Bailhache, University of Frankfurt

Electromagnetic probes

γ, γ^{*}

Emitted at all stages of the heavy-ion collisions with negligible final-state interactions contrary to hadronic probes ! \rightarrow Undistorted information about the medium at the same of their emission

Electromagnetic probes Most interesting ones (Direct γ , γ *)

Electromagnetic probes

Electromagnetic probes Most interesting ones (Direct γ, γ^*)

Initial hard scattering

- Test $N_{\rm coll}$ scaling
- Constrain nuclear PDFs
- Candle for energy loss studies: γ-tagged jets..

Pre-equilibrium phase

Mechanism of equilibration

Thermal radiation

- Effective QGP temperature
- Constrain space-time evolution

Chiral symmetry restoration with dileptons

- ρ broadening
- Constrain mechanisms:

 ρ – a_1 mixing

Focus on soft (thermal) radiation

- Direct photons: $low-p_T$
- Dileptons

Disclaimer: will not cover initial hard-scattering or UPC

Raphaelle Bailhache, University of Frankfurt

Electromagnetic probes

Direct photons: low pt

Raphaelle Bailhache, University of Frankfurt

Electromagnetic probes

Direct photons

Sources populate different $p_{\rm T}$ ranges:

- Hard scattering: prompt photons
 - Direct production
 - Fragmentation photons
- **Pre-equilibrium**
- Thermal radiation from QGP and hot hadronic matter
- + possible jet-medium interaction

Direct photons

Sources populate different $p_{\rm T}$ ranges:

- Hard scattering: prompt photons
 - Direct production
 - Fragmentation photons
- **Pre-equilibrium**
- Thermal radiation from QGP and hot hadronic matter
- + possible jet-medium interaction

Thermal sources at low $p_{\rm T}$:

inverse slope \propto effective fireball temperature $T_{\rm eff}$

- Blueshifted due to radial flow
- Averaged over time
- \rightarrow Need models to disentangle sources

Direct photons: status before QM

Direct γ yield at low $p_{\rm T}$ in A+A collisions above prompt hard-scattering γ expectation observed by:

- PHENIX with different methods at different energies $\sqrt{s_{\rm NN}} = 39-200 \, {\rm GeV}$
- ALICE with different methods at $\sqrt{s_{\rm NN}}$ = 2.76 TeV (ALICE results link)

PHENIX: Phys. Rev. C 107, 024914 (2023); arXiv:2203.17187 ALICE: Phys. Lett. B 754 (2016) 235-248; Ana Marin Hard Probes 2023

Carolina Arata #174 Vassu Doomra #655

Direct photons: status before QM

Extracted T_{eff} from $\gamma_{\text{non-prompt}} = \gamma_{\text{dir}} - \gamma_{\text{prompt}}^{\text{estimated}}$

- Increases with $p_{\rm T}$ range used to fit
- Above deconfinement temperature
- No obvious variation of $T_{\rm eff}$ with $dN_{\rm ch}/dN_{\eta}|_{\eta=0}$ although do not exclude small increase

Carolina Arata #174 Vassu Doomra #655

ALICE: Phys. Lett. B 754 (2016) 235-248; Ana Marin Hard Probes 2023

Interpretation of $T_{\rm eff}$

- Naive idea: higher $p_{\rm T}$, earlier emission, higher T
- But:
 - Bias due to radial flow: $T_{\rm eff}^{\rm w/flow} > T_{\rm eff}^{\rm w/o \, flow}$
 - Locally: large for high $p_{\rm T} \gamma_{\rm thermal}$ emitted at small T
 - Globally: integrated over space-time \rightarrow smaller
 - **Contributions from pre-equilibrium** (without well defined T) for $p_{\rm T} \ge 2.5$ -3 GeV/c

Jean-Francois Paquet #787

 $T_{\rm min}$

C. Shen, U. W. Heinz, J-F Paquet, C. Gale, Phys. Rev. C 89 (2014) 044910 J-F Paquet, arXiv:2305.10669

11

Raphaelle Bailhache, University of Frankfurt

Electromagnetic probes

Measure v_2 of direct γ in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV with 10 × larger data sample

 $Au - Au \sqrt{s_{NN}} = 200 \text{ GeV}$

$$v_2^{\rm dir} \sim v_2^{\gamma_{\rm decay}} \sim v_2^{\pi}$$

$$v_2^{\rm dir} \sim 0$$

at high $p_{\rm T,ee}$

Results in agreement with previous publication and with significant reduction of uncertainties

Electromagnetic probes

Vassu Doomra #655

Direct photon puzzle still there

Yield

 $v_2^{\rm dir}$

Vassu Doomra #655

$$Au - Au \sqrt{s_{NN}} = 200 \text{ GeV}$$

Simultaneous description of yield and v_2 challenging for theory

(Same trend at the LHC but ok within large uncertainties)

> Trigger some theoretical idea **J-A Sun Poster #236** but only showing v_2^{dir} !

News from ALICE: Pb – Pb 5.02 TeV

- Finalised γ_{dir} yield in central Pb—Pb collisions at 5.02 TeV using dielectrons
- Described by calculations including:
 - Prompt photons
 - Pre-equilibrium photons
 - Thermal photons

If anything: model tends to overestimate yield

Daiki Sekihata #171

15

RHIC and LHC energies

$dN_{\gamma dir}/dy$ at the LHC

consistent with universal scaling behaviour seen by PHENIX:

$$\frac{\mathrm{d}N_{\gamma_{\mathrm{dir}}}}{\mathrm{d}y} = C(p_{\mathrm{T}}) \times (\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta \mid_{\eta=0})^{\alpha}$$

with no obvious $p_{\rm T}$ dependence of α (not so trivial why)

RHIC and LHC energies

$dN_{\gamma dir}/dy$ at the LHC consistent with universal scaling behaviour seen by PHENIX:

$$\frac{\mathrm{d}N_{\gamma_{\mathrm{dir}}}}{\mathrm{d}y} = C(p_{\mathrm{T}}) \times (\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta \mid_{\eta=0})^{\alpha}$$

with no obvious $p_{\rm T}$ dependence of α (not so trivial why)

But some issues remained opened:

- Discrepancy between STAR and PHENIX results
- Same model (lines):
 - Underestimates PHENIX data from semi-peripheral to peripheral (increasing discrepancy)
- In agreement with LHC data (need to decrease uncertainties)

Daiki Sekihata #171

pp collisions at the LHC

First measurement of direct photons at low $p_{\rm T}$ in small systems at the LHC

- Minimum bias pp collisions $\sqrt{s} = 13$ TeV
 - Provide reference
 - Reproduced by both prompt only and lacksquareprompt + thermal radiation calculations
- High-multiplicity pp collisions $\sqrt{s} = 13$ TeV
 - Search for onset of thermal radiation
 - Significant higher γ_{dir} yield
 - Call for predictions

Minimum bias pp $\sqrt{s} = 13$ TeV

Minimum bias pp High-multiplicity pp

Dileptons

Raphaelle Bailhache, University of Frankfurt

Electromagnetic probes

Virtual photons

Carry mass (m_{ee}):

• Can serve as an approximate clock

\rightarrow Separate thermal radiation from different stages

Schematic view of dielectron invariant mass spectrum

Virtual photons

Carry mass (m_{ee}):

- Can serve as an approximate clock \rightarrow Separate thermal radiation from different stages
- Invariant mass not affected by radial flow
 - \rightarrow Access to QGP properties without blue shift Inverse slope \rightarrow Access to early averaged temperature

Schematic view of dielectron invariant mass spectrum

<u>R. Rapp and H. Van Hees, Phys. Lett. B753 (2016) 586</u>

Virtual photons

Carry mass (m_{ee}):

- Can serve as an approximate clock
 - \rightarrow Separate thermal radiation from different stages
- Invariant mass not affected by radial flow
 - \rightarrow Access to QGP properties without blue shift Inverse slope \rightarrow Access to early averaged temperature
- Radiation from hot-hadronic matter Sensitive to in-medium spectral function of ρ meson Related to chiral symmetry restoration, lifetime of the fireball

Schematic view of dielectron invariant mass spectrum

Results over a wide range of energies

Probe the phase diagram from (high $\mu_{\rm B}/{ m low}~T$) to small (low $\mu_{\rm B}/{ m high}~T$)

New results from:

- HADES: Ag-Ag $\sqrt{s_{\rm NN}}$ = 2.42 and 2.55 GeV + pp reference for Ag-Ag $\sqrt{s_{\rm NN}}$ = 2.55 GeV
- STAR:

Au-Au $\sqrt{s_{\rm NN}}$ = 7.7, 14.6, 19.6 GeV (BES-II COL)

• ALICE:

$$Pb-Pb\sqrt{s_{NN}} = 5.02 \text{ TeV}$$

Raphaelle Bailhache, University of Frankfurt

Electromagnetic probes

Odyniec, G. (2022) In: Blaschke, D., Redlich, K., Sasaki, C., Turko, L. Lecture Notes in Physics, vol 999. Springer, Charm, ISBM 978-3-030-95490-1

HADES: Ag – Ag at very high $\mu_{\rm R}$

- Clear excess of e^+e^- pairs over:
 - Cocktail of hadronic decays at freeze-out
 - + initial NN contributions pp analysis for 2.55 GeV ongoing

Karina Scharmann Poster #201

Niklas Schild Poster #683

 $\mu_{
m B}pprox\,$ 800 MeV

Ag-Ag $\sqrt{s_{\rm NN}} = 2.42$, **2.55** GeV

Au-Au at $\sqrt{s_{NN}} = 2.42 \text{ GeV}$: <u>HADES, Nature Phys, 15 (2019) 10, 1040</u> $\pi^- p \rightarrow ne^+ e^-$ at $\sqrt{s_{\pi^- p}} = 1.49 \text{ GeV}$: <u>HADES, arXiv:2205.15914</u> 24

HADES: Ag – Ag at very high $\mu_{\rm R}$

- Clear excess of e^+e^- pairs over:
 - Cocktail of hadronic decays at freeze-out
 - + initial NN contributions pp analysis for 2.55 GeV ongoing

Karina Scharmann Poster #201

Niklas Schild Poster #683

Ag-Ag $\sqrt{s_{\rm NN}} = 2.42$, **2.55** GeV

Au-Au at $\sqrt{s_{NN}} = 2.42 \text{ GeV}$: <u>HADES, Nature Phys, 15 (2019) 10, 1040</u> $\pi^- p \rightarrow ne^+ e^-$ at $\sqrt{s_{\pi^- p}} = 1.49 \text{ GeV}$: <u>HADES, arXiv:2205.15914</u> 25

HADES: Ag – Ag at very high μ_R

- Clear excess of e^+e^- pairs over:
 - Cocktail of hadronic decays at freeze-out
 - + initial NN contributions pp analysis for 2.55 GeV ongoing

Karina Scharmann Poster #201

• v_2 of e⁺e⁻ pairs \approx 0 in excess region

At SIS18 energies, $v_2 < 0$ for $\pi^{0,\pm}$ due to spectator shadowing Differential studies as a function of mass, $p_{\rm T}$, y and centrality Comparison with transport model **Renan Hirayama Poster #133**

 \rightarrow Confirm penetrating nature

Au-Au at $\sqrt{s_{NN}} = 2.42 \text{ GeV}$: <u>HADES, Nature Phys, 15 (2019) 10, 1040</u> $\pi^- p \rightarrow ne^+ e^- \text{ at } \sqrt{s_{\pi^- p}} = 1.49 \text{ GeV}$: <u>HADES, arXiv:2205.15914</u> 26

HADES: Ag – Ag at very high μ_R

Excess = Data - Cocktail - measured initial NN contributions

has an exponential shape:

$$\frac{\mathrm{d}N}{\mathrm{d}M_{\mathrm{ee}}} \propto M_{\mathrm{ee}}^{3/2} \exp(-\frac{M_{\mathrm{ee}}}{T_{\mathrm{fit}}})$$

 \rightarrow Extract integrated fireball temperature $T_{\rm fit} \approx$ 70 MeV for $0.2 < M_{\rm ee} < 0.9 ~{\rm GeV/c^2}$ now differentially in centrality classes

Excess reproduced by hadronic thermal rates folded with coarse-grained medium evolution from transport

Niklas Schild Poster #683

$$\mu_{
m B}pprox$$
 800

Ag-Ag $\sqrt{s_{\rm NN}}$ = **2.42**, 2.55 GeV

) MeV

STAR: Au – Au at intermediate $\mu_{\rm B}$

observed over cocktail of hadronic decays at freeze-out (without ρ) + Drell-Yan

Electromagnetic probes

Yiding Han #301 **Chenliang Jin Poster #683**

Excess of e^+e^- pairs at low $m_{e^+e^-}$

STAR: Au – Au at intermediate $\mu_{\rm R}$

observed over cocktail of hadronic decays at freeze-out (without ρ) + Drell-Yan

Electromagnetic probes

Yiding Han #301 **Chenliang Jin Poster #683**

 $\mu_{
m B}pprox\,$ 200–500 MeV

Excess of e^+e^- pairs at low $m_{e^+e^-}$

STAR: excess at low mass

Excess yield at low m_{ee} / (d N_{π^0} /dy)

• For $\sqrt{s_{\rm NN}} \ge 17.3$ GeV: described (over larger mass range) by calculations including thermal production of ρ with in-medium broadening spectral function (+ QGP)

In BES-II region (NEW):

Baryon density increases, $T_{\rm ch}$ decreases \rightarrow Probe the role of baryons and temperature effects

Hint for a decrease with $\sqrt{s_{\rm NN}}$, need to reduce uncertainties (future experiments CBM, NA60+)

Yiding Han #301 **Chenliang Jin Poster #683**

 $\mu_{
m B}pprox\,$ 200–500 MeV

STAR BES-I: PRC 107, L061901 (2023) R. Rapp and H. van Hees, Phys. Lett. B 753, 586 (2016)

STAR: higher mass

Excess / ($dN_{ch}/d\eta$ **) at higher** $\sqrt{s_{NN}}$ (> 19 GeV BES-I)

Compared to new calculations for QGP thermal radiation with:

- Production rates up to NLO at finite $\mu_{\rm B}$
- Integrated over space-time with a realistic hydro
- \rightarrow Quite good agreement with the data

C. Gale #626

 $\mu_{
m B}pprox\,$ 0–200 MeV

Au-Au
$$\sqrt{s_{\rm NN}}$$
 = 19, 27, 39, 62.4, 200 G

STAR: higher mass

Excess / ($dN_{ch}/d\eta$ **) at higher \sqrt{s_{NN}} (> 19 GeV BES-I**)

Compared to new calculations for QGP thermal radiation with:

- Production rates up to NLO at finite $\mu_{\rm B}$
- Integrated over space-time with a realistic hydro

\rightarrow Quite good agreement with the data

Confirm theoretically:

- Role of thermal QGP dileptons as thermometers
- Discriminating power of dilepton polarisation (e.g. $\mu_{\rm R}$)

No pre-equilibrium contributions yet in the calculations

 \rightarrow Need more precise data

C. Gale #626

 $\mu_{
m B}pprox\,$ 0–200 MeV

Au – Au
$$\sqrt{s_{\rm NN}}$$
 = 19, 27, 39, 62.4, 200 G

ALICE: Pb – Pb at $\mu_{\rm B} \approx 0$

Finalised dielectron yield

compared to background cocktail from hadronic decays

- Large heavy-flavour (HF) background not easy to estimate: \rightarrow two versions:
 - Vacuum expectations (pp $\times \langle N_{coll} \rangle$)
 - Medium effects (measured $R^{c,b \rightarrow e^{\pm}}_{\Delta \Delta}$, EPS09 nPDF)
- No clear excess over the background \rightarrow Hint at low m_{ee} (0.18 < m_{ee} < 0.5 GeV/c²)

Daiki Sekihata #171

 $Pb-Pb\sqrt{s_{NN}} = 5.02 \text{ TeV}$

ALICE, arXiv:2308.16704

ALICE: Pb – Pb at $\mu_{\rm B} \approx 0$

Finalised dielectron yield

compared to background cocktail from hadronic decays

- Large heavy-flavour (HF) background not easy to estimate: \rightarrow two versions:
 - Vacuum expectations (pp $\times \langle N_{coll} \rangle$)
 - Medium effects (measured $R^{c,b \rightarrow e^{\pm}}_{\Delta \Delta}$, EPS09 nPDF)
- No clear excess over the background \rightarrow Hint at low m_{ee} (0.18 < m_{ee} < 0.5 GeV/c²)

Daiki Sekihata #171

 $Pb-Pb\sqrt{s_{NN}} = 5.02 \text{ TeV}$

ALICE, arXiv:2308.16704

ALICE: excess at low mass

Excess = Dielectron yield - background cocktail (w/o ρ)

Compared to calculations for thermal radiation

- from hadronic phase (in-medium ρ)
- from QGP

Tension in $0.5 < m_{\rm ee} < 0.8~{\rm GeV/c^2}$ (~ 3 σ)

\rightarrow Need to reduce uncertainties

Daiki Sekihata #171

 $\mu_{
m B}pprox$ O

Pb-Pb
$$\sqrt{s_{\rm NN}}$$
 = 5.02 TeV

ALICE, arXiv:2308.16704

35

Much more data (up to a factor 100 for Pb-Pb)

Daiki Sekihata #171

ALICE: Jerome Jung Poster #665 PHENIX: Roli Esha Poster #217

Key tool to handle the heavy-flavour background at the LHC !

ALICE: Jerome Jung Poster #665 PHENIX: Roli Esha Poster #217

Future measurements

Different experiments at different accelerator facilities

- From high $\mu_{\rm B}$ to vanishing $\mu_{\rm B}$ HADES, STAR, CBM, NA60+, ALICE 2&3
- To answer open questions:
 - Mechanism of Chiral symmetry restoration (ρa_1 mixing)
 - Dilepton v_2 (Input for direct photon puzzle)
 - Dilepton polarisation (discriminating variable)
 - Equilibrium mechanisms
 - QGP EoS (T_{eff})
 - First order phase transition at large $\mu_{
 m B}$ ($T_{
 m eff}$ in IMR vs $\sqrt{s_{
 m NN}}$)
 - Electric conductivity

NA60+: Giacomo Alocco #761 **CBM: Claudia Hoehne #687** ALICE 3: Isabella Sanna #317 **Poster Sebastian Scheid #158**

Courtesy of Thomas Ullrich

Future measurements

Different experiments at different accelerator facilities

- From high $\mu_{\rm B}$ to vanishing $\mu_{\rm B}$ HADES, STAR, CBM, NA60+, ALICE 2&3
- To answer open questions:

Azumi Sakai #721

- Mechanism of Chiral symmetry restoration (ρa_1 mixing)
- Dilepton v_2 (Input for direct photon puzzle)
- Dilepton polarisation (discriminating variable) Florian Seck #741
- Equilibrium mechanisms
- QGP EoS (T_{eff})
- First order phase transition at large $\mu_{
 m B}$ ($T_{
 m eff}$ in IMR vs $\sqrt{s_{
 m NN}}$)
- Electric conductivity Toru Nishimura #785

NA60+: Giacomo Alocco #761 **CBM: Claudia Hoehne #687** ALICE 3: Isabella Sanna #317 **Poster Sebastian Scheid #158**

Courtesy of Thomas Ullrich

Summary

- Direct photons: low- $p_{\rm T}$

 - Some issues remain opened (direct photon puzzle...) \rightarrow Common effort between theorists and experimentalists to solve them
- Dileptons
 - Measurements at very different $\mu_{\rm B}/T$
 - Large potential of dilepton measurements shown by theory at this QM \bullet
 - Huge experimental efforts to make such measurements possible.....starting now !

Many thanks to H. Appelshäuser, H. Busching, V. Doomra, R. Esha, T. Galatyuk, C. Hoehne, C. Gale, D. Gabor, Y. Han, J. Jung, A. Marin, T. Nishimura, J-F Paquet, P. Plaschke, R. Rapp, K. Reygers, A. Sakai, M. Sas, N. Schild, S. Scheid, F. Seck, D. Sekihata, J-a Sun

• Uncertainties of measurements improving in time at RHIC and at the LHC (effort still on going)

40

Raphaelle Bailhache, University of Frankfurt

Electromagnetic probes

High- p_{T} **isolated photons**

Prompt photons with fragmentation contribution suppressed

- Central Pb—Pb collisions
- $p_{\rm T} > 20$ GeV/c: $R_{\rm AA} = 1$ \rightarrow Verify N_{coll} scaling \rightarrow Calibrated reference for γ -h studies
- $p_{\rm T} < 20$ GeV/c: Cold nuclear matter effects expected May be overestimated by JETPHOX \rightarrow Constrain nPDFs

Carolina Arata #174

Scale uncertainty $p_{\tau}^{\gamma}/2 < \mu < 2p_{\tau}^{\gamma}$

High- p_{T} isolated photons

Prompt photons with fragmentation contribution suppressed

Central Pb—Pb collisions

- $p_{\rm T} > 20$ GeV/c: $R_{\rm AA} = 1$ \rightarrow Verify N_{coll} scaling \rightarrow Calibrated reference for γ -h studies
- $p_{\rm T} < 20$ GeV/c: Cold nuclear matter effects expected May be overestimated by JETPHOX \rightarrow Constrain nPDFs

Peripheral Pb—Pb collisions

• $R_{AA} < 1$: centrality selection bias of Glauber model Agreement with model by C.Loizides & A. Morsch C. Loizides & A. Morsch, arXiv:1705.08856 Use prompt photons as centrality estimators

(In peripheral AA and in small systems) **PHENIX Daniel Firak #654**

Raphaelle Bailhache, University of Frankfurt

Electromagnetic probes

Carolina Arata #174

Direct photons: status before QM

Direct γ yield at low $p_{\rm T}$ in A+A collisions above prompt hard-scattering γ expectation observed by:

- PHENIX with different methods at different energies $\sqrt{s_{\rm NN}} = 39-200 \, {\rm GeV}$
- ALICE with different methods at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

Electromagnetic probes

 $Pb-Pb\sqrt{s_{NN}} = 2.76 \text{ TeV}$

ALI-PREL-538511

PHENIX: Phys. Rev. C 107, 024914 (2023); arXiv:2203.17187 ALICE: Phys. Lett. B 754 (2016) 235-248; Ana Marin Hard Probes 2023

Direct photons: status before QM

Extracted T_{eff} from $\gamma_{\text{non-prompt}} = \gamma_{\text{dir}} - \gamma_{\text{prompt}}^{\text{estimated}}$

- increases with $p_{\rm T}$ range used to fit
- Above deconfinement temperature
- No obvious variation of $T_{\rm eff}$ with $dN_{\rm ch}/dN_{\eta}|_{\eta=0}$ Although Do not exclude small increase

PHENIX: Phys. Rev. C 107, 024914 (2023); arXiv:2203.17187 ALICE: Phys. Lett. B 754 (2016) 235-248; Ana Marin Hard Probes 2023

Interpretation of $T_{\rm eff}$

- Naive idea: higher $p_{\rm T}$, earlier emission, higher TAnalytic expression with simple symmetric hydro (Gubser) solutions

 $T_{\rm eff} \approx \frac{T_0}{1 + \frac{5}{2} \frac{T_0}{p}}$ Initial maximum *T* of plasma $p_{\rm T}$ where $T_{\rm eff}$ is fitted for $\eta = 0$

- But bias due to radial flow: $T_{\rm eff}^{\rm w/flow} > T_{\rm eff}^{\rm w/o\,flow}$
 - Locally: large for high $p_{\rm T} \gamma_{\rm thermal}$ emitted at small T
 - Globally: integrated over space-time \rightarrow smaller

And further effects under study e.g. γ from pre-equilibrium contribution for $p_{\rm T} \ge 2.5$ GeV/c

Jean-Francois Paquet #787

C. Shen, U. W. Heinz, J-F Paquet, C. Gale, Phys. Rev. C 89 (2014) 044910 J-F Paquet, arXiv:2305.10669

RHIC and LHC energies

Electromagnetic probes

Daiki Sekihata #171

ALICE, arXiv:2308.16704

47

RHIC and LHC energies

$dN_{\gamma dir}/dy$ at the LHC consistent with universal scaling behaviour seen by PHENIX:

$$\frac{\mathrm{d}N_{\gamma_{\mathrm{dir}}}}{\mathrm{d}y} = C(p_{\mathrm{T}}) \times (\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta \mid_{\eta=0})^{\alpha}$$

with no obvious $p_{\rm T}$ dependence of α (not so trivial why)

PHENIX Au—Au data at 200 GeV: $\alpha = 1.11 \pm 0.02$ (stat) $\pm_{0.08}^{0.09}$ (syst)

To be taken with care: LHC Pb—Pb data at 2.76 TeV and 5.02 TeV: $\alpha = 1.07 \pm 0.25$ (syst + stat)

Daiki Sekihata #171

STAR: excess BES-

Yiding Han #301 **Chenliang Jin Poster #683**

Au-Au $\sqrt{s_{\rm NN}}$ = 19, 27, 39, 62.4, 200 GeV

STAR BES-I: PRC 107, L061901 (2023) R. Rapp and H. van Hees, Phys. Lett. B 753, 586 (2016)

ALICE: higher mass

Dielectron yield in the intermediate mass

 $(1.2 < m_{ee} < 2.6 \text{ GeV/c}^2)$

Predicted thermal contribution from QGP:

- Expanding fireball model
- Transport model

Small compared to heavy-flavour decay background

\rightarrow Need an other approach

Daiki Sekihata #171

Pb-Pb
$$\sqrt{s_{\rm NN}}$$
 = 5.02 TeV

ALICE, arXiv:2308.16704

STAR: higher mass

Excess / ($dN_{ch}/d\eta$ **) at a bit higher** $\sqrt{s_{NN}}$ (> 19 GeV BES-I)

Compared to new calculations for QGP thermal radiation with:

- Production rates up to NLO at finite $\mu_{\rm B}$
- Integrated over space-time with a realistic hydro
- \rightarrow Quite good agreement with the data

Confirm:

- Role of thermal QGP dileptons as thermometers
- Discriminating power of dilepton polarisation (e.g. $\mu_{\rm B}$)

No pre-equilibrium contributions yet in the calculations

C. Gale #626

 $\mu_{
m B}pprox\,$ 0–200 MeV

Au-Au
$$\sqrt{s_{\rm NN}}$$
 = 19, 27, 39, 62.4, 200 G

STAR BES-I: PRC 107, L061901 (2023)

ALICE: finalised results in Pb—Pb

Excess = Dielectron yield - background cocktail

- Significance of excess: 1.8σ (1.5σ) in $0.18 < m_{ee} < 0.5$ GeV/ c^2
- Consistent with calculations for thermal radiation
 - from hadronic phase (ρ)
 - from QGP

Parton-Hadron-String Dynamics (PHSD) model = transport model

ALICE, arXiv:XXX

$$Pb-Pb\sqrt{s_{NN}} = 5.02 \text{ TeV}$$

52

Feasibility studies: CBM dielectrons

After 3 years, 5 days/energy, 100 kHz IR

- Low mass (< 1 GeV/c²) dominated by thermal rho, reconstructed with precision of 1.5-4.5%
- \rightarrow Allow for fireball lifetime measurement
- Intermediate mass (> 1 GeV/ c^2): accessible, statistics not yet sufficient to extract physics

from partonic to hadronic fireballs

Raphaelle Bailhache, University of Frankfurt

Electromagnetic probes

Christian Pauly, Hard Probes 2023

The little big bang

QGP

Initial state

hard scatterings, pre-equilibrium

KoMPoST

pre-equilibrium Initial conditions dynamics

Relativistic viscous hydro (MUSIC), equation of state (Hadron resonance gas, lattice QCD) Electromagnetic probes

IP-Glasma, Trento ansatz quark suppression... Raphaelle Bailhache, University of Frankfurt

hadronic decays

hot hadronic phase

Hydrodynamic phase

Hadronic transport

SMASH...

