Detectors

TK Hemmick

How do you want to do your physics?

- Outline of the presentation:
 - Measuring E with Calorimeters
 - Measuring \vec{p} with Tracking
 - Measuring PID

- **Beam Species; Beam Energy;** (E, p_x, p_y, p_z)
 - Seems logical to use real 4-vectors.
 - Close match to textbook calculations
 - **Does this mean** $\left(Calorimeter, \overrightarrow{Tracker}\right)$ is ideal?
 - Not exactly...
- All measured particles are "on shell".
 - $E^2 = p^2 + m^2$
 - Past generations have measured on shell masses well.
 - Your precision is enhanced using this knowledge.
 - 1. Calorimeter-centric $(ID, E\hat{p})$
 - 2. Spectrometer-centric (ID, \vec{p})
 - 3. Best = properly weighted average of 1 & 2

Particles must interact

- Four fundamental forces: Gravity, Weak, E&M, strong
- Participants
 - Pion Strong, E&MProton Strong, E&MMedium Range
 - ► Muon E&M Long Range
 - ► Electron E&M → Short Range
 - ▶ Bremsstrahlung sets in for the electron.
 - Allows short detector
 - Allows high precision

Instrument a Pb Brick

- A piece of Pb does no produce a signal
 - Csl scintillates
 - PbWO₄ scintillates

Crystal Calorimeters

- Best Precision
- Highest Cost
- Slice the Pb brick like bread and insert CP detectors
 - "Sampling Calorimeter"
 - ▶ The big question is how the signal gets out

Fluorescence is a Cheap Redirect

Drug Paraphernalia from the 1970's

Fluorescent "Wavelength Shifter"

Wavelength Shift Fibers

- ► Fluorescence absorbs light at shorter wavelength and re-emits it at a longer wavelength.
- "Blacklight Posters" used inks containing Fluorescent Dye
- Plastic can be purchased with Fluorescent Dye in bars and in fibers.
- Fluorescence "redirects" the light, much of which is totally internally reflected to the back.
- Shashlik or Shish Kebab is best.

SciFi (aka Scintillating Fibers)

- Scintillating fibers with close spacing direct light out the back without shifters
- Here an sPHENIX EMCAL block is shown.
 - The surrounding material is W powder mixed with a minimal amount of epoxy that is been "injection-molded" around a tight array of scintillating fiber.

Accordion

ATLAS Liquid Argon

sPHENIX HCAL

- ATLAS Liquid Argon Calorimeter pioneered the "accordion" to channel ionization charge from within the Argon along the accordion folds.
- > sPHENIX mimicked this with a simple "tilt" of each tile and concentrated the light using a wavelength shifting fiber.

Calorimeter Energy Resolution

- Fundamentally the calorimeter "counts" something (charge particles, ionization, photons, ...) that is proportional to the energy deposit.
 - Statistical Term:
 - $N \propto E$
 - $\rightarrow \partial N = \sqrt{N} \propto \sqrt{E}$
 - Scale/Calibration Term:
 - E = aN
 - $\rightarrow \partial E = \partial a N = const * E$
 - $\rightarrow \frac{\partial E}{E} = const$
 - Noise Term:
 - $\rightarrow \partial E = const$
 - $\frac{\partial E}{F} = \frac{const}{F}$
 - **Full Resolution**

Often

Calorimeters vs Spectrometers

- Calorimeters
 - Measures energy
 - Best energy resolution at highest momentum/energy
 - ▶ DESTRUCTIVE to the particle (cannot measure again)
- Magnetic spectrometers
 - Measures momentum
 - Best momentum resolution at lower momentum
 - Position Resolution: $\frac{\partial p}{p} = c_2 p$
 - Multiple Scattering: $\frac{\partial p}{p} = c_1$

Non-destructive to the particle

$$\partial \beta = \frac{13.6}{\beta cp} z \sqrt{x/X_0} [1 + 0.038 \ln(x/X_0)]$$

$$\partial \beta = \frac{const}{p} \propto \frac{\partial p}{p^2}$$
$$\frac{\partial p}{\partial p} = const$$

$$X_0 = \frac{716.4A}{Z(Z+1) \ln(287/\sqrt{Z})} = \frac{\text{Rad.len.}}{(287/\sqrt{Z})} \frac{dE/dx|_{\min}}{(287/\sqrt{Z})} = \frac{AE}{(287/\sqrt{Z})} = \frac{AE}{(287/$$

Electron Motion in a Gas

- Low electric fields
 - Collisions of electrons with gas molecules provide an effect backward "Force" on the electron proportional to velocity: $F_R = -bv$.
 - Terminal velocity when qE = bv; $v_T = \frac{q}{b}E$
 - ▶ Ions are simple ("b" is effectively constant and $v_T \propto E$
 - Electrons are more complicated as "b" depends upon v
- High Electric Fields
 - Electrons gain enough energy in a mean free path that they are capable of ionizing the gas.
 - Exponential growth in electron current:

$$\frac{I}{I_0} = e^{\alpha x}$$

- \triangleright Growth controlled by the Townsend Coefficient, α .
- Virtually all gas detectors use a low electric field to drift electrons into an avalanche region for detection.

Geiger-Muller → Charpak (Nobel 1993)

- With a pure noble gas, photons from the avalanche create ionization in the outer region.
- The avalanche "runs away"
 - Good news: BIG signal
 - Bad news:
 - Dead time to recharge wire
 - Insensitive to energy deposited

- Complex molecules have the ability to absorb energy as vibrations and rotations.
- Adding this "quench" to the gas breaks the feedback loop.
- "Proportional Counter"

Gas Chamber Evolution

Time Projection Chamber

Avalanche Stage Evolution (MPGD)

microMEGAS

loannas Giomataris

Gas Electron Multipliers GEMs

Fabio Sauli

Precision of Gas Measurements

- Many factors can affect resolution, but two terms affect all detectors.
 - Readout Intrinsic Resolution
 - Constant...segmentation, noise, etc...
 - $ightharpoonup \sigma_I$
 - Diffusion
 - Diffusion is a transverse kick due to electron-molecule collisions
 - Diffusion follows the mathematics of a random walk.
 - A single electron "misses" it's target by $\sigma_1 = D_T \sqrt{L}$
 - ▶ The error on the mean of N electrons revied is $\sigma_T = \frac{\sigma_1}{\sqrt{N}}$
 - ▶ Other effects are either sensitive to the number of electrons in a signal or not. The typical formula becomes: $\sigma = \sigma_i \oplus \frac{D_T}{\sqrt{N_{eff}}} \sqrt{L}$
 - Notice that transverse diffusion falls STEEPLY with magnetic field.

sPHENIX TPC Example

Silicon Detectors

- Reverse bias diode ideally flows no current and created a depletion region in the middle.
- A charge particle energy deposit in the depleted region makes current surge.
- Chip technology allows a pattern of sensors to be printed onto a chip.
- "Bump bonding" allows individual sensors to be connected to a readout chip.

- Monolithic Active Pixel Sensor (MAPS)
- Point-like collection of the signal frees space on chip to allow readout.
- Point-like collection reduces input capacitance and makes noise low.
- ALPIDE (shown) is a leading MAPs chip.

ALPIDE in ALICE and sPHENIX

- ► ALPIDE sensors developed by ALICE.
- Same technology also used in sPHENIX.
- NOTE: Silicon and Gas resolutions use different units!
 - Silicon uses pixel size; gas uses sigma (factor of $\sqrt{12}$)
 - \triangleright 29 x 27 μ m² means sigmas of 8.4 x 7.8 μ m²

PID ~ Velocity

- $p = my\beta$ E = my velocity(β) measurement yields mass.
- Direct measurement:
 - Record signal time at multiple locations, calculate v.
 - "Fast" detector = low transit time spread (most easily achieved at small transit time)
- Velocity-dependent interaction(s) with detector:
 - Specific Ionization (aka $\frac{dE}{dx}$)
 - Cherenkov Radiation: $\cos \theta_C = \frac{1}{nR}$
 - \triangleright $\theta_{\rm C}$ measured wrt track direction.
 - Thus dependent upon deliverables from tracking
 - Bremsstrahlung: $P=\frac{q^2\gamma^4}{6\pi\varepsilon_0c}\left(\dot{\beta}^2+\frac{\left(\vec{\beta}\cdot\dot{\vec{\beta}}\right)^2}{1-\beta^2}\right)$ Transition Radiation: $I=\frac{Z^2e^2\gamma\omega_p}{3c}$

TOF covered well in prior presentations, not repeated here

Time-of-Flight

MCP: Micro Channel Plate

- Direct measurements of velocity require a fast charge collection device.
- ► The time resolution is automatically helped by small devices:
 - ► LGAD: Low Gain Avalanche Device. Instantly small.
 - ► MCP: Micro Channel Plate → LAPPD (Large Area Picosecond Photon Detector)

dE/dx

- dE/dx is a velocity-dependent interaction with the detector.
- Combined with momentum it provides PID.
- ▶ "Band crossings" are at β ~0.7 and can be distinguished many ways.

Cherenkov Light

Cherenkov Angle determines β

$$\theta_{\rm C} = \cos^{-1}\left(\frac{1}{\beta n}\right)$$

- Cherenkov Light "Optical Boom"
- ☐ Cherenkov angle depends upon velocity & index
 - > Low n distinguishes particles to high momentum.
 - > Low n yields less light!
- ☐ Go where the light is:

> Deep UV Cherenkov yield is highest...how to get there?

Dual RICH

- Cherenkov radiator
- Refractive Index
- n = 1.02 (aerogel) 1.0008 (C₂F₆)
- Length of the radiator
- L = 4 cm (aerogel), 160 cm (C_2F_6)
- Mirrors
- Photon Detector
- 3 mm pixel size; 200-500 nm MAPMT
- Particle Generation

Originate from the vertex

 K/π and p/K separation as a function of momentum

- Exquisite detail in simulation.
- Al-based optimization.
- Uses constant external angular resolution assumption.
- Similar external constraint assumed as deduced for separate gas & aerogel RICHes

Tracking	
Angular resolution	σ = 0.5 mrad (1 mm over 2 m) – whole momentum range
Impact point resolution	σ = 0.3 mm
Momentum resolution dP/P	+/- few percent negligible effects in Cherenkov angle reconstruction
Magnetic Field	3 Tesla Central Field in JL-MEIC spectrometer
Space Requirement	(based on original spectrometer constraints)
longitudinal length	JLEIC: ≈1.6 m, ePHENIX: ≈1.0 m
transverse radius	JLEIC: ≈2.5 m, ePHENIX: ≈2 m External Assumption
beam pipe radius	
Background	no direct external background only backrground produced by the simulated charged particle: Delta rays, Rayleigh scattering

NOTE: PMTs to the side makes optical aberration ("Emission") dominant

Detection of Internally Reflected Cherenkov: DIRC

- ▶ At normal incidence, Cerenkov light is internally reflected for $n > \sqrt{2}$
- Cerenkov angle preserved if bars meticulously flat with 90 degree corners.
 - ▶ If you "back up the photon sensors" this is a proximity focus. (original BaBar)
 - ▶ If you use focusing elements it becomes a high performance hpDIRC
- Spectacularly compact PID device with photon detection at end.

eID by Transition Radiation (TRD)

- "Threshold detector" (TR X-rays produced or not)
- P_{min} ~ 1 GeV (rejection ~constant at higher momentum)

3: ID TR photons by energy/pos

Balance between X₀ and rejection

Summary

- Welcome to Nuclear Physics!!!
- Detector Technology is fun and exciting.
- ▶ No time for so many things SiPM, readout electronics, streaming mode.
- Present capabilities are excellent and the future is better.
- You are entering the nuclear physics at an amazing time.
- Financial investments are excellent, particularly with the future electron-ion collider.