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A great time to be in the field of heavy ion physics
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Dennis V. Perepelitsa
QCD Town Hall meeting 2022 + the EIC and others 

experiments



Stages of a heavy ion collision 
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Heavy-ion collisions
• What are the properties of the 

hot and dense QGP: equation of 
state, transport properties 

• How to measure the QGP 
experimentally?

• The theory and phenomenological 
modeling of the QGP?

• How to compare theory and 
experimental results? 
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Heavy-ion collisions
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• What are the properties of the 
hot and dense QGP: equation of 
state, transport properties 

• How to measure the QGP 
experimentally?

• The theory and phenomenological 
modeling of the QGP?

• How to compare theory and 
experimental results? 

• Besides the QGP, what other 
(QCD) phenomena we could 
learn in heavy-ion collisions?



Electromagnetic probes: early times and time evolution 
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Electromagnetic probes: early times and time evolution 
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Thermal properties of the QGP:
Low-energy photons and low-mass 
dileptons radiated from the plasma, 
but they do not have further 
interactions

Initial properties of the collision:
High-energy photons, dileptons and 
weak bosons are mainly produced 
when the nuclei initially collide 



What are the conditions for the QCD phase transition?
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Temperature profile
Jean-François Paquet
https://arxiv.org/pdf/2307.09967.pdf
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Electromagnetic radiation produced early
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Jean-François Paquet
https://arxiv.org/pdf/2307.09967.pdf



Electromagnetic radiation produced early
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Jean-François Paquet
Hard probes 2023



Challenging measurements 
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Francesca Bellini
CERN student lectures



Lots of future potential 
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Lijuan Ruan
QM’23 student lecture 

BESII and future 
NA60+, CBM, and 
Run 3 and 4 in ALICE 
(FoCal), and ALICE3



UPCs: Ultra-peripheral heavy ion collisions
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UPC: Ultra peripheral collisions

Two heavy nuclei in the sky
Were speeding on their way
They met upon a common course
But did not touch that day

They did not know what they would make
A photon or a pair
They only knew they had to shake
The fields that made them glare

A poem generated by Bing AI



16

Ultra peripheral collisions
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EM fields of a charged particle Joakim Nystrand
Student lectures at 
Forward QCD 2022

Pulse width

The photon flux can be 
computed
 through a Fourier 
transform
Weizsäcker-Williams 
method (1934) 



RHIC and LHC as Photon Colliders  

• Ultra Peripheral Collisions (UPC) can explore 
a wide range of energies using almost real photons

 k = gMV exp(±,y)
 Up to several TeV in gp
 Up to ~ 700 GeV/nucleon in gA
 Up to ~ 150 GeV in gg using UPC PbPb,
                        ~ 4 TeV in in gg using UPC pp

• UPCs at the LHC probe the hadronic structure over a 
broad and unique Bjoren x region, yet the precision 
not compatible to DIS machines like the EIC 

 x = MV/gmp exp(±,y) 

Interactions mediated by 
the EM interactions 

Equivalent photon flux 
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The structure and dynamics of hadrons



Gluons matter    

Quark Matter 2023  Daniel Tapia Takaki 

Quarks and gluons dynamics described by QCD

Gluons carry color, thus self-gluon interactions  

QS: Matter of Definition and Frame (II)

7

Infinite Momentum Frame:
• BFKL (linear QCD): splitting functions ⇒ gluon density grows
• BK (non-linear): recombination of gluons ⇒ gluon density tamed

BFKL: BK adds:

αs << 1αs ∼ 1 ΛQCD

know how to 
do physics here?

ma
x. 

de
ns

ity

Qs kT

~ 1/kT

k T φ
(x,

 k T2 )

• At Qs:   gluon emission balanced by recombination

Unintegrated gluon distribution
depends on kT and x:
the majority of gluons have 
transverse momentum kT ~ QS
(common definition)
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• BFKL (linear QCD): splitting functions ⇒ gluon density grows
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know how to 
do physics here?
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• At Qs:   gluon emission balanced by recombination

Unintegrated gluon distribution
depends on kT and x:
the majority of gluons have 
transverse momentum kT ~ QS
(common definition)

Many gluon emissions at low-x

20



Gluon saturation 
At high energies, or for heavy nuclei at lower energies, gluon saturation is predicted QS: Matter of Definition and Frame (II)

7
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• At Qs:   gluon emission balanced by recombination

Unintegrated gluon distribution
depends on kT and x:
the majority of gluons have 
transverse momentum kT ~ QS
(common definition)

gluon 
emission

gluon recombination

=

Dynamical equilibrium of 
gluon saturation state reached

• Non-linear QCD evolution 
equations introduced, but 
how is gluon saturation 
triggered?

• Can we determine 
experimentally the 
saturation scale (QS)? 

• Is there a state of matter 
formed by gluon saturated 
matter with universal 
properties? 
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Evolution of the hadronic structure with Bjorken-x and Q2Key Topic in eA: Gluon Saturation (I)

6

In QCD, the proton is made up 
of quanta that fluctuate in and 
out of existence 
• Boosted proton: 
‣ Fluctuations time dilated on 

strong interaction time 
scales  

‣ Long lived gluons can 
radiate further small x 
gluons! 

‣ Explosion of gluon density 
! violates unitarity
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pQCD  
evolution  
equation

New Approach: Non-Linear Evolution 
• New evolution equations at  low-x & low to moderate Q2 

• Saturation of gluon densities characterized by scale Qs(x) 
• Wave function is Color Glass Condensate

• Experimental observables 
needed to map out the 
transition between the dilute 
and saturation regimes

• For nuclei, the saturation 
scale is enhanced by a A1/3 
factor

(QA
s )2 ⇡ cQ2

0


A

x

�1/3
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Nuclear shadowing experimentally confirmed, but not fully understood

• Experimental observation 
that parton distributions are 
different for protons and 
nuclei 

• What’s the mechanism 
responsible for shadowing? 
How is gluon saturation 
related? 

• The knowledge of the initial 
state of nuclei also needed 
for understanding the QGP 
evolution

23



Possible stages? 

24

Vadim Guzey
Hard Probes 2023



Experimental program 

• The Electron-Ion Collider will be a 
dedicated QCD machine with the 
precision and control capabilities for 
studying gluon saturation and 
shadowing in a systematic way like 
never before. 

• The LHC explores the high energy 
domain for both hadronic and 
photon-induced reactions 

• FoCal at ALICE will explore a unique 
low-x regime reaching x ~ 10-6 
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Vector meson (VM) photoproduction in UPCs

• As in DIS, several reactions are 
possible in UPCs: 

 -Exclusive photoproduction  
 -Semi-exclusive photoproduction 
 -Inclusive photoproduction 
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Vector meson (VM) photoproduction in UPCs

• By studying various VMs, it is 
possible to study the Q2 
dependence

• In the dipole approach, the light 
VMs (f, r0) are more sensitive 
to saturation because of the larger 
dipole, but pQCD methods not 
applicable   
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Ultra peripheral collisions



First exclusive J/y measurements by ALICE using Run 1 (2013)  

Phys. Rev. Lett. 113 (2014) 23, 232504

• No change with 
respect to HERA 
power-law growth 
observed at low 
energies up to 
700 GeV

• UPC pPb collisions 
have no ambiguity on 
the photon energy 
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Two-fold ambiguity on the photon direction in symmetric systems  

Symmetric systems (pp, A-A) suffer from the two-fold ambiguity on the 
photon direction 

Positive rapidity Negative rapidity 

Only UPC asymmetric systems (p-Pb) analyses provide a model 
independent way of the energy dependence of s(gp)
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The ALICE FoCal project for Run 4
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Projections for exclusive J/y off protons 
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CGC (IP-Sat, b-CGC)
CCT
Power-law fit to ALICE data
Power-law fit to ALICE data + STARlight projection

FoCal 
Acceptance

-1 = 8.16 TeV, 150 nbNNsUPC p-Pb • Deviations from a 
power-law trend should 
signal non-linear QCD 
dynamics 

• Here, projections based 
on STARlight which 
uses a parametrization 
based on HERA data

• For all figures, 60% 
efficiency. Conservative  
assumption after 
acceptance selection 
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Projections for exclusive J/y off protons 

• Projections assuming a 
broken power-law

• Projected points based 
on NLO BFKL 
calculation 
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Projections for exclusive J/y off protons 
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FoCal measurement would be sufficient to observe 
a deviation from a power law behavior, if exists  

Power-law behavior (STARlight) Broken power-law behavior (NLO BFKL) 

34



35

Transverse profile of the target 
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J/y photoproduction in d+Au 
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Projections for dissociative J/y cross section ratio in gp

In the Good-Walker approach, 
sensitive to subnucleonic 
fluctuations of the gluon density
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Event-by-event fluctuations
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J. Cepilia, J.G. Contreras and DTT 
Phys. Lett.B 766 (2017) 186-191
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Projections for VMs in gPb

K. Eskola et al., arXiv:2203.11613

• At LO predicted to be 
proportial to the square 
of the gluon density (Z. 
Ryskin Phys. C 57, 89 
(1993), but several 
caveats

• UPC J/y also 
described by 
Generalized Parton 
Distributions (GPDs), 
with some theory 
considerations  
  

Recent NLO calculations indicate importance of quark contribution 
and large scale uncertainties
The FoCal region is gluon dominated 
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Nuclear suppression factor for UPC J/y: Comparing gPb to gp
V. Guzey et al. PLB 726 (2013)

Run 1 data from ALICE was the 
first at indicating nuclear gluon 
shadowing at x ~ 10-3

 
Large scale NLO uncertainties 
should cancel in the SPb(x) ratio 

ALICE results at y=0 have no 
ambiguity on the photon energy 
determination

An experimental definition, which can be 
linked to PDFs at LO
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Nuclear suppression factor for peripheral (not UPC) J/y

J.G. Contreras, Phys. Rev .C 96 (2017) 1, 015203

Run 1 data from ALICE observed 
Coherent-like J/y from peripheral 
hadronic PbPb events. Process 
later confirmed by STAR  

The photon flux depends on the 
impact parameter, these 
peripheral J/y explore gP energies 
beyond coherent J/y at the same 
y interval at the same cms energy 

Sensitivity to x ~ 10-5
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Neutron-dependence of coherent J/y in gPb

Decomposed in terms of neutron configurations emitted in the forward region

Solving the linear equations resolves the two-photon ambiguity for VMs at y ≠ 0 

Positive rapidity Negative rapidity 

The photon flux (n) depends on the impact parameter
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Energy dependence of coherent J/y in gPb

43

Both gluon saturation 
and shadowing 
describe the data at 
high energies

At low energies the 
data cannot be 
described by these 
models 



Photonuclear jets 
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Sensitivity to nuclear 
modification, including 
from PDFs



Linear polarization 

45

Polarization properties 
in UPCs is a new tool 
to study QCD, probing 
QM at the smallest 
scale available 



Flow studies from UPCs

46



UPCs and searches for new physics 
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UPCs and searches for new physics 
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The tau anomalous magnetic momentum

UPCs is opening new directions of investigation for QCD, heavy ions, 
electromagnetic and BSM physics



https://indico.cern.ch/event/1263865

Registration 
and abstract 
deadline:
September 15

Student day on 
December 10

We have some 
limited funding 
for students. 
Contact us ! 

https://indico.cern.ch/event/1263865


Thanks!


