

Bulk physics: critical point search

Lijuan Ruan (BNL) September 3rd, 2023

The phases of QCD matter

Lattice QCD: crossover chiral transition at μ_B < 2 T

At top RHIC and LHC energies, measurements consistent with a smooth crossover chiral transition

Change T and μ_B by varying the collision energy.

What do we need to measure T and μ_B

What do we need to measure T and μ_B

Phys. Rev. C 96 (2017) 44904

$$\pi^{\pm}$$
, K^{\pm} , p , \bar{p} , Λ , $\bar{\Lambda}$, Ξ , and $\bar{\Xi}$.

$$\begin{array}{c} \pi^-/\pi^+,\,\bar{K}^-/K^+,\,\bar{p}/p,\,\bar{\Lambda}/\Lambda,\,\overline{\Xi}/\Xi,\,K^-/\pi^-,\,\bar{p}/\pi^-,\,\Lambda/\pi^-,\\ \text{and }\overline{\Xi}/\pi^-. \end{array}$$

The system is dynamic

How to infer the QCD critical point

Divergence of the correlation length, dynamics slow down, Large density fluctuations

Critical opalescence, magnetic susceptibility

How to infer the QCD critical point

Correlation length related to various moments of the distributions of conserved quantities such as net-baryon, net-charge, and net-strangeness.

$$<(\delta N)^2>\approx \xi^2, <(\delta N)^3>\approx \xi^{4.5}, <(\delta N)^4>-3<(\delta N)^2>^2\approx \xi^7$$

$$M = \langle N \rangle$$

St. Deviation:
$$\sigma = \sqrt{\langle (N-\langle N \rangle)^2 \rangle}$$

Skewness:
$$S = \frac{\langle (N - \langle N \rangle)^3 \rangle}{\sigma^3}$$

Kurtosis:
$$\kappa = \frac{\langle (N - \langle N \rangle)^4 \rangle}{\sigma^4} - 3$$

Measure non-Gaussian fluctuation of conserved quantities

Connection to Lattice QCD

Lattice calculations show that moments of the conserved charge (net-baryon, net-charge, netstrangeness) distributions are related to the susceptibilities

Pressure:

$$\frac{p}{T^4} = \frac{1}{VT^3} \ln Z(V, T, \mu_B, \mu_Q, \mu_S)$$

Susceptibility:

$$\chi_{q}^{(n)} = \frac{1}{T^{4}} \frac{\partial^{n}}{\partial (\mu_{q}/T)^{n}} P\left(\frac{T}{T_{C}}, \frac{\mu_{q}}{T}\right) \Big|_{T/T_{C}},$$

$$q = B, Q, S \quad \text{(Conserved Quantum Number)}$$

$$\chi_{q}^{(1)} = \frac{1}{VT^{3}} \left\langle \delta N_{q} \right\rangle, \chi_{q}^{(2)} = \frac{1}{VT^{3}} \left\langle \left(\delta N_{q}\right)^{2} \right\rangle$$

$$\chi_{q}^{(3)} = \frac{1}{VT^{3}} \left\langle \left(\delta N_{q}\right)^{3} \right\rangle$$

$$\chi_{q}^{(4)} = \frac{1}{VT^{3}} \left\langle \left(\delta N_{q}\right)^{4} \right\rangle - 3 \left\langle \left(\delta N_{q}\right)^{2} \right\rangle^{2}$$
A. Beggyov et al. ar Viv: 1208, 1220, 1207,0784

$$\chi_q^{(1)} = \frac{1}{VT^3} \langle \delta N_q \rangle, \chi_q^{(2)} = \frac{1}{VT^3} \langle (\delta N_q)^2 \rangle$$

$$\chi_q^{(3)} = \frac{1}{VT^3} \left\langle \left(\delta N_q \right)^3 \right\rangle$$

$$\chi_q^{(4)} = \frac{1}{VT^3} \left(\left\langle \left(\delta N_q \right)^4 \right\rangle - 3 \left\langle \left(\delta N_q \right)^2 \right\rangle^2 \right)$$

Bazavov et al .arXiv::1208.1220. 1207.0784.

F. Karsch et al, PLB 695, 136 (2011).

arXiv: 1203.0784; S. Borsanyi et al, JHEP1201,138(2011);

High moments of net-proton multiplicity distributions

$$\kappa\sigma^{2} \sim \frac{\chi^{(4)}}{\chi^{(2)}}, S\sigma \sim \frac{\chi^{(3)}}{\chi^{(2)}}, \frac{\sigma^{2}}{M} \sim \frac{\chi^{(2)}}{\chi^{(1)}}$$

PRL 105 (2010) 022302

High moments of net-proton multiplicity distributions

PRL 105 (2010) 022302

No evidence for a QCD critical point in the QGP phase diagram for μ_B < 200 MeV

0.04 M, 5 M, 8 M data used for 19.6, 62.4, and 200 GeV respectively.

Go to STAR Beam Energy Scan Phase I (BES-I)

Energy (GeV)	7.7	11.5	19.6	27	39	62.4	200
Statistics (Million)	~3	~6.6	~15	~30	~87	~47	~242
Year	2010	2010	2011	2011	2010	2010	2010

STAR TPC dE/dx PID

Proton Phase Space

Net-proton higher moments from BES-I

$20 < \mu_B < 420 \text{ MeV}$

UrQMD includes baryon conservation and hadronic scattering effects

At $\sqrt{s_{\rm NN}}$ > 39 GeV, results from p+p, peripheral, and central Au+Au similar

Deviate from Skellam and UrQMD expectations at $\sqrt{s_{
m NN}} \leq 27~{
m GeV}$

Data reasonably described by assuming independent production of proton and anti-proton

Comprehensive analysis techniques developed including centrality bin width correction, statistical error estimation (Delta theorem method, centrality resolution effect etc.)

STAR Time of Flight detector upgrade

US-China Collaboration, 120 units in total:

2008: 4%; 2009: 72%; 2010: 100%

STAR Collaboration, PLB616(2005)8

Net-proton higher moments from BES-I with TOF

PRL 126 (2021) 92301

 $20 < \mu_B < 420 \text{ MeV}$

pT range extended to 0.4-2 GeV/c

14.5 and 54.4 GeV data included

First evidence of a non-monotonic variation in kurtosis times variance of the net-proton number distribution as a function of collision energy with 3.1 sigma significance

STAR BES-II upgrades

Detector performance

STAR as a fixed-target experiment

Results at 3 GeV from FXT

BES-I: PRL 126 (2021) 092301

3 GeV data: PRL 128 (2022) 202303

- Non-monotonic energy dependence in central Au+Au collisions (3.1σ)
- Strong suppression in proton
 C₄/C₂ at 3 GeV
- consistent with UrQMD hadronic transport model calculation

BES-II data collected at RHIC will cover a broad and interesting range of μ_B for the critical point search

Higher order net-proton number fluctuations

Calculations with a cross-over quark-hadron transition (LQCD and FRG) predict a particular ordering of susceptibility ratios:

$$\chi_3^B/\chi_1^B > \chi_4^B/\chi_2^B > \chi_5^B/\chi_1^B > \chi_6^B/\chi_2^B$$

- At 7.7-200 GeV, net-proton cumulant ratios consistent with the ordering predicted by LQCD and FRG: $C_3/C_1>C_4/C_2>C_5/C_1>C_6/C_2$
- The 3 GeV data show a reversing trend

The structure of QCD matter at high baryon density μ_B ~720 MeV starkly different from those at vanishing μ_B

Beam energy scan phase II (BES-II) in 2019-2021

Goal was L_{avq} (BES-II) = $4x L_{avq}$ (BES-I)

In BES-II

3.8 x
$$L_{avg}$$
 (BES-I)
4.0 x L_{avg} (BES-I)
4.7 x L_{avg} (BES-I) with
6.4 x L_{avg} (BES-I) LEReC
at lowest
~10 x L_{avg} (BES-I) beam

RHIC is unique to map the phase diagram of QCD:

Beam energy scan II: collision energies 7.7, 9.2, 11.5, 14.6, 17.3, 19.6 GeV and 12 fixed-target energies In 2021, collected the last collider data set at 7.7 GeV, completed the BES-II program.

energies

BES-II datasets

A broad μ_B coverage: 20 < μ_B < 720 MeV

Any other measurements?

 $N_t N_p / N_d^2$, sensitive to fluctuations of the local neutron density shows enhancements relative to the coalescence baseline with a significance of 2.3σ and 3.4σ respectively in 0 –10% central Au+Au collisions at 19.6 and 27 GeV.

Constrain production dynamics of light nuclei and understanding of the QCD phase diagram

Photons and dileptons

Utilizing penetrating probes, sensitive to the local properties of the emission source, we study

- The phase diagram of QCD
- The plasma temperature and its time evolution
- Medium properties such as shear and bulk viscosity
- Pre-equilibrium dynamics
- Chiral symmetry restoration

Experimentally very challenging due to enormous backgrounds

The STAR BES II program, ALICE in Runs 3 and 4, the future experiments NA60+, CBM, and ALICE 3 with new detector capabilities will provide high-precision measurements.

The simultaneous systematic study of soft photons and dileptons, along with soft hadrons and other observables, will provide unparalleled constraints on the properties of deconfined nuclear matter.

Dileptons

Thermal Radiation

Probe first order phase transition

The phases of QCD matter

Progress since last LRP:

Lattice QCD: crossover chiral transition at $\mu_B < 2 T$

At top RHIC and LHC energies, measurements consistent with a smooth crossover chiral transition

RHIC Beam Energy Scan Phase I (BES-I) measurements imply the QCD critical point, if exists, should be accessible in the center of mass energy region 3-20 GeV

BES-II data taking (energy range 3 - 19.6 GeV) completed in 2021, physics analyses under active pursuit

The future

NA60+ (2029)

NA61 (2008 - 2027)

Physics opportunities in the exploration of the QCD phase diagram at high baryon density after the completion of the RHIC BES-II program: NA60+, NA61, CBM, NICA ...

Probe the physics of dense baryon-rich matter and constrain the nuclear equation of state in a regime relevant to binary neutron star mergers and supernovae.

Backup

Freeze out temperatures

Chiral cross-over transition

Lattice QCD predicts a sign change of susceptibility ratio χ_6^B/χ_2^B at T_C The cumulants of net-proton distribution sensitive to chiral cross over transition at μ_B =0

Observed a hint of a sign change from peripheral to central collisions at 200 GeV $C_6/C_2 < 0$ at central collisions

High statistics measurements (10% statistical error for C_6/C_2 in central) will pin down the sign change