Calculation of the Polarized Bethe-Heitler Cross Section for the Electron Ion Collider

Dhevan Gangadharan
University of Houston
Quark Matter
Houston, September 2023

Luminosity

Instantaneous Luminosity for identical Gaussian beams:

$$
\mathcal{L}=\frac{f N^{2}}{4 \pi \sigma_{x} \sigma_{y}}
$$

The EIC will measure lots of absolute cross sections
$\sigma_{\text {meas }}=\frac{N_{\text {meas }}}{L}$
Luminosity is a crucial normalization for all cross sections
$f=$ crossing frequency
$N=$ number particles per beam $\sigma_{x}, \sigma_{y}=$ Gaussian widths.

- Problem: σ_{x} and σ_{y} are not precisely known during injection
- Van der Meer scans typically used in hadron colliders, but they are not done in real time (special fills)
- Best collider \mathcal{L} measurements in the world are accurate to about 1%

Measuring Luminosity at HERA/EIC

Measure it in real-time using a precisely calculable process in QED

Nuclear DIS

Not precisely calculable nor "easy" to measure.

Nuclei

Bremsstrahlung

Precisely calculable and "easy" to measure

Electron

Task: Measure the collider luminosity by counting the rate of produced photons and dividing by the calculated Bremsstrahlung cross section: $\mathcal{L}=R_{\text {meas }} / \sigma_{\text {Brem }}$

Measuring Luminosity with ePIC

Experimental Goal:

Count the number of Bremsstrahlung photons: N_{γ}
Photons travel co-linear with electron in beam pipe

Pair Spectrometer (PS):
Counts pair conversions
Direct photon CAL:
Counts photons directly.

What Has Been Calculated

- Bethe and Heitler calculated the unpolarized leading order Bremsstrahlung cross section in 1934: Proc.Roy.Soc.Lond.A 146 (1934) 83-112
- Higher orders contribute at the 0.1\% level (very perturbative): Eur.Phys.J.C 71 (2011) 1574
- The Bethe-Heitler cross section was successfully used at HERA to measure luminosity.

What Needs to be Calculated for the EIC

- The upcoming Electron Ion Collider (EIC) will collide polarized electrons and polarized ions.
- An analytic calculation of polarized cross section is presented here.

3 references used:
(1) Landau and Lifshitz (QED textbook, sections 93-97)
(2) Matthew Schwartz (QFT textbook)
(3) Gluckstern and Hull (Phys. Rev. 90 1953)

Feynman Diagrams

$$
p=(\varepsilon, \mathbf{p}) \quad p^{\prime}=\left(\varepsilon^{\prime}, \mathbf{p}^{\prime}\right) \quad k=(\omega, \mathbf{k})
$$

$q^{2} \sim m_{e}^{2}$: due to the small polar angles of photon in Bethe-Heitler process, $\theta_{k} \sim m_{e} / \varepsilon$
\rightarrow Suitable Approximations

- Structure of hadron can be neglected
- Amplitude scales with Z for larger ions (coherent scattering)
- Neglect energy transfer to nucleus: $q=\left(q_{0}, \mathbf{q}\right) \approx\left(\frac{\mathbf{q}^{2}}{2 m_{p}}, \mathbf{q}\right) \approx(0, \mathbf{q})$

Amplitude and Amplitude Squared

Amplitude from Feynman Rules:
$M=e^{3} \frac{g_{\mu \nu}}{q^{2}} \epsilon_{\sigma}^{*}(k)\left[\bar{u}\left(r^{\prime}\right) \gamma^{\mu} u(r)\right]\left[\bar{u}\left(p^{\prime}\right)\left[\gamma^{\sigma} \frac{p^{\prime \prime}+k+m_{e}}{2 p^{\prime} k} \gamma^{\nu}+\gamma^{\nu} \frac{\underline{p-k+m_{e}}}{-2 p k} \gamma^{\sigma}\right] u(p)\right]$

Amplitude Squared:

$$
|M|^{2}=-\frac{e^{6}}{4 q^{4}} \operatorname{Tr}\left[u\left(r^{\prime}\right) \bar{u}\left(r^{\prime}\right) \gamma^{\mu} u(r) \bar{u}(r) \gamma^{\alpha}\right] \operatorname{Tr}\left[u\left(p^{\prime}\right) \bar{u}\left(p^{\prime}\right) Q_{\mu}^{\sigma} u(p) \bar{u}(p) \bar{Q}_{\sigma \alpha}\right]
$$

$$
\begin{aligned}
& Q_{\mu}^{\sigma}=\gamma^{\sigma} \frac{p^{\prime \prime}+k+m_{e}}{p^{\prime} k} \gamma_{\mu}-\gamma_{\mu} \frac{p-k+m_{e}}{p k} \gamma^{\sigma} \\
& \sum_{p o l} \epsilon_{a}^{*}(k) \epsilon_{b}(k) \rightarrow-g_{a b} \quad(\text { sum over } \gamma \text { polarizations in final state })
\end{aligned}
$$

Tensor form of Amplitude Squared:

$$
|M|^{2} \equiv-\frac{e^{6}}{4 q^{4}} W^{\mu \alpha} w_{\mu \alpha}
$$

Particle Polarizations

Polarized part

$$
\begin{gathered}
W^{\mu \alpha}=\mathcal{U}^{\mu \alpha}+\mathcal{P}^{\mu \alpha} \\
w_{\mu \alpha}=\mathfrak{U}_{\mu \alpha}+\mathfrak{p}_{\mu \alpha} \\
\text { Unpolarized part }
\end{gathered}
$$

- $\mathcal{U}^{\mu \alpha}$ and $\mathfrak{u}_{\mu \alpha}$ are symmetric tensors
- $\mathcal{P}^{\mu \alpha}$ and $\mathfrak{p}_{\mu \alpha}$ are antisymmetric
- Thus, only $\mathcal{U}^{\mu \alpha} \mathfrak{u}_{\mu \alpha}$ and $\mathcal{P}^{\mu \alpha} \mathfrak{p}_{\mu \alpha}$ survive
- $\mathcal{U}^{\mu \alpha} \mathfrak{u}_{\mu \alpha} \rightarrow$ Bethe-Heitler expression
- $\mathcal{P}^{\mu \alpha} \mathfrak{p}_{\mu \alpha} \rightarrow$ to be calculated

Unmeasured spins in the final state

$$
\begin{aligned}
& \sum_{\text {spin }} u\left(p^{\prime}\right) \bar{u}\left(p^{\prime}\right)=\not p^{\prime}+m_{e} \\
& \sum_{\text {spin }} u(p) \bar{u}(p)=\not p+m_{e}
\end{aligned}
$$

Measured beam polarizations

$$
\begin{aligned}
& u(p) \bar{u}(p)=\frac{1}{2}\left(\not p+m_{e}\right)\left(1-\gamma^{5} \boldsymbol{\phi}^{(e)}\right) \\
& u(r) \bar{u}(r)=\frac{1}{2}\left(\gamma+m_{p}\right)\left(1-\gamma^{5} \boldsymbol{\phi}^{(p)}\right)
\end{aligned}
$$

Spin 4-vectors (longitudinal beam polarizations)

$$
\begin{aligned}
& \text { Target Rest Frame \& ultrarelativistic limit } \\
& a^{(e)}=2 \mathbb{P}_{e} \frac{E_{e} E_{p}}{m_{e} m_{p}}(-1,0,0,+1) \\
& a^{(p)}=\mathbb{P}_{p}(0,0,0,+1)
\end{aligned}
$$

- \mathbb{P}_{e} and \mathbb{P}_{p} are electron and proton beam polarizations along the respective momentum in lab frame. E_{e} and E_{p} are the beam energies in lab frame.

Fully-Differential Cross Section

$$
\begin{aligned}
\mathcal{P}^{\mu \nu} p_{\mu \nu}= & -32 m_{e} m_{\rho}\left[\frac{1}{(p k)^{2}}\left(\frac{q^{2}}{2} k a^{(e)}\left(q a^{(p)}-2 p^{\prime} a^{(p)}\right)\right)\right. \\
+ & \left(\frac{1}{(p k)^{2}}+\frac{1}{\left(p^{\prime} k\right)^{2}}\right)\left(q a^{(e)} q a^{(p)} m_{e}^{2}-a^{(e)} a^{(p)} q^{2} m_{e}^{2}\right) \\
+ & \frac{1}{(p k)\left(p^{\prime} k\right)}\left(-q^{4} a^{(e)} a^{(p)}-2 q a^{(e)} q a^{(p)} m_{e}^{2}+\frac{q^{2}}{2}\left(2 p^{\prime} a^{(e)}\left(p^{\prime} a^{(p)}-p a^{(p)}\right)\right.\right. \\
& \left.\left.\quad+k a^{(e)}\left(3 q a^{(p)}+2 p a^{(p)}\right)+4 m_{e}^{2} a^{(e)} a^{(p)}\right)\right) \\
+ & \left.\left(\frac{1}{p^{\prime} k}-\frac{1}{p k}\right)\left(\left(q a^{(e)}+k a^{(e)}\right) q a^{(p)}-2 q^{2} a^{(e)} a^{(p)}\right)\right]
\end{aligned}
$$

Polarized Component to Differential Cross Section

$$
d \sigma_{\mathcal{P}}=\frac{-\alpha r_{e}^{2} m_{e}^{2}}{4(4 \pi)^{2} q^{4} m_{p}^{2}} \mathcal{P}^{\mu \alpha} \mathfrak{p}_{\mu \alpha} \frac{\left|\mathbf{p}^{\prime}\right| \omega d \omega}{|\mathbf{p}|} d \Omega^{\prime} d \Omega_{k} \quad \alpha=\frac{e^{2}}{4 \pi} \quad r_{e}=\frac{e^{2}}{4 \pi m_{e}}
$$

The challenge is to integrate analytically over the scattered electron and photon angular phase space: $d \Omega^{\prime} d \Omega_{k}$

Scattered Electron Integration

For longitudinal beam polarizations, all 4-vector products involving p^{\prime} can be expressed in terms of $(1-\mathbf{p} \mathbf{a})$ and $\left(1-\mathbf{p}^{\prime} \mathbf{b}\right)$ and constants of integration.
For instance, $p^{\prime} k=\varepsilon^{\prime} \omega\left(1-\mathbf{p}^{\prime} \mathbf{b}\right) \quad \mathbf{b}=\frac{\mathbf{k}}{\varepsilon^{\prime} \omega}$
The integrals over the scattered electron angles can be put into the form:
$I_{m, n}=\int d \Omega^{\prime}\left(1-\mathbf{p}^{\prime} \mathbf{a}\right)^{-m}\left(1-\mathbf{p}^{\prime} \mathbf{b}\right)^{-n} \quad$ Guccstern and Hul., Phys. Rev. 90 (1953)
The array of integrals present:
$I_{0,0}, I_{0,1}, I_{1,0}, I_{-1,1}, I_{1,-1}, I_{1,1}, I_{2,0}, I_{0,2}, I_{2,1}, I_{1,2}, I_{2,-1}, I_{2,-2}, I_{2,2}$
Non-trivial one are $I_{1,1}, I_{2,1}, I_{1,2}, I_{2,2}$
Steps to Integrate these:
(1) Merge denominators using a Feynman parameter
(2) Trivial integration over azimuthal angles
(3) Look up remaining Feynman parameter integral in a table of integrals

Assembly of integrated pieces and subsequent algebraic simplification done with Mathematica

Double-Differential Cross Section

Boost from target-rest-frame to lab-frame, especially simple here because photons are almost colinear to beam electron: $\theta_{k} \sim m_{e} / \varepsilon$

$$
\omega \rightarrow \omega \frac{2 \epsilon_{p}}{m_{p}} \quad \varepsilon \rightarrow \varepsilon \frac{2 \epsilon_{p}}{m_{p}} \quad \varepsilon^{\prime} \rightarrow \varepsilon^{\prime} \frac{2 \epsilon_{p}}{m_{p}}
$$

Cross section differential in photon energy and polar angle

$$
\begin{gathered}
\frac{d \sigma_{\mathcal{P}}}{d \omega d \delta}=\mathbb{P}_{e} \mathbb{P}_{p} \frac{\alpha r_{e}^{2} m_{e}^{2} \delta}{\omega \varepsilon^{3} \varepsilon^{\prime} \varepsilon_{p}\left(1+\delta^{2}\right)^{2}}\left[\delta_{0}^{2}\left(4 L_{1} \varepsilon \varepsilon^{\prime 2}+2 \omega\left(\left(L_{1}+L_{2}-L_{\theta}\right) \varepsilon^{2}+L_{1} \varepsilon \varepsilon^{\prime}-L_{2} \varepsilon^{\prime 2}\right)-2 \omega^{3}-5 \varepsilon^{\prime} \omega^{2}-6 \varepsilon^{\prime 2} \omega-4 \varepsilon^{\prime 3}\right)\right. \\
\\
\left.+2 \varepsilon\left(\left(1+2 L_{\theta}\right) \varepsilon^{\prime 2}+\left(1-L_{1}-L_{2}+L_{\theta}\right) \omega^{2}+\varepsilon^{\prime} \omega\left(-L_{1}-L_{2}+2 L_{\theta}+\frac{1}{1+\delta_{0}^{2}}\right)\right)\right] \\
\delta=\theta \frac{\varepsilon}{m_{e}} \quad L_{1}=2 \ln \frac{4 \varepsilon^{\prime} \varepsilon_{p}}{m_{e} m_{p}} \quad L_{2}=\ln \frac{4 \varepsilon \varepsilon^{\prime} \varepsilon_{p}}{\omega m_{e} m_{p}} \quad L_{\theta}=\ln \left(1+\delta^{2}\right)
\end{gathered}
$$

- The spectrum is peaked near $\delta \sim 1$, which means $\theta_{k} \lesssim \frac{m_{e}}{\varepsilon}$

Single-Differential Cross Section: Main Result

Integration over the photon polar angle, δ_{k}, is elementary but leads to tedious algebra. Mathematica is used for this integration and subsequent simplification:

Cross section differential in photon energy

$$
\begin{gathered}
\frac{d \sigma_{\mathcal{P}}}{d \omega}=\mathbb{P}_{e} \mathbb{P}_{p} \frac{4 \alpha r_{e}^{2}}{\omega} \frac{\varepsilon^{\prime}}{\varepsilon} \frac{m_{e}^{2}}{\varepsilon \varepsilon_{p}}\left(F_{1}+\frac{\varepsilon}{4 \varepsilon^{\prime}} F_{2}+\frac{\varepsilon^{\prime}}{8 \varepsilon} F_{3}+\frac{\varepsilon^{2}}{2 \varepsilon^{\prime 2}} F_{4}\right) \\
F_{1}=\frac{1}{8}\left(7+L_{2}\left(2-4 L_{3}\right)-4 L_{3}+L_{1}\left(-2+4 L_{3}\right)\right), \\
F_{2}=-3+L_{1}+2 L_{2}+L_{3}\left(1-2 L_{2}+2 L_{3}\right), \\
F_{3}=\left(-1+2 L_{2}\right)\left(-1+2 L_{3}\right), \\
F_{4}=\left(-1+L_{3}\right)\left(-2+L_{1}+L_{2}-L_{3}\right) . \\
L_{1}=\ln \frac{4 \varepsilon^{\prime} \epsilon_{p}}{m_{e} m_{p}} \quad L_{2}=\ln \frac{4 \varepsilon \varepsilon^{\prime} \epsilon_{p}}{\omega m_{e} m_{p}} \quad L_{3}=\ln \frac{\pi \varepsilon \epsilon_{p}}{m_{e} m_{p}}
\end{gathered}
$$

Cross Section Visualization: Main Result

Full 1D cross section

$$
\frac{d \sigma}{d \omega}=\frac{4 \alpha r_{e}^{2}}{\omega} \frac{\varepsilon^{\prime}}{\varepsilon}[\mathcal{U}+\mathcal{P}]
$$

Unpolarized Bethe-Heitler term

$$
\mathcal{U}=\left(\frac{\varepsilon}{\varepsilon^{\prime}}+\frac{\varepsilon^{\prime}}{\varepsilon}-\frac{2}{3}\right)\left(L_{2}-\frac{1}{2}\right)
$$

New Polarized term

$$
\mathcal{P}=\mathbb{P}_{e} \mathbb{P}_{p} \frac{m_{e}^{2}}{\varepsilon \varepsilon_{p}}\left(F_{1}+\frac{\varepsilon}{4 \varepsilon^{\prime}} F_{2}+\frac{\varepsilon^{\prime}}{8 \varepsilon} F_{3}+\frac{\varepsilon^{2}}{2 \varepsilon^{\prime 2}} F_{4}\right)
$$

Summary and Additional Remark

- An analytic expression for the polarized Bremsstrahlung cross section has been calculated
- The calculation is applicable at low q^{2}, as needed for the luminosity program at the upcoming EIC.
- The polarized component is highly suppressed $\left(\frac{m_{e}^{2}}{\varepsilon \varepsilon_{p}}\right)$ wrt the unpolarized Bethe-Heitler term.
- This work has been posted recently: arXiv:2307.16245

Additional Remark

The EIC will accelerate ions as heavy as uranium $(Z=92)$ For high Z, the Bethe-Heitler expression is known to be inaccurate. Bethe \& Maximon provided a more general solution that the EIC should use instead:

Bethe-Maximon equation Phys Rev 93,768 \& 788 (1954)

$$
\begin{array}{ll}
\frac{d \sigma_{\mathrm{BM}}}{d \omega}=\frac{4 \alpha r_{e}^{2}}{\omega} \frac{\varepsilon^{\prime}}{\varepsilon}\left(\frac{\varepsilon}{\varepsilon^{\prime}}+\frac{\varepsilon^{\prime}}{\varepsilon}-\frac{2}{3}\right)\left(\ln \frac{4 \varepsilon \varepsilon^{\prime} \varepsilon_{p}}{\omega m_{p} m_{e}}-\frac{1}{2}-f(\alpha Z)\right) \\
f(\alpha Z)=(\alpha Z)^{2} \sum_{n=1}^{\infty} \frac{1}{n\left(n^{2}+(\alpha Z)^{2}\right)} & \text { for } \alpha Z \ll 1 \quad f(\alpha Z) \approx 1.2(\alpha Z)^{2}
\end{array}
$$

Extra Slides

Sharp drop at upper energy threshold

Akushevich et al. (1998) arXiv:hep-ph/9804361

Figure 6. Integrand of radiative correction to the cross section (36) over R normalized to the Born one in the case of combination of the cross section (43). The broken line shows the used cut of photon energy ($E_{\gamma}<10 \mathrm{GeV}$).

