

HADRONIZATION

- Renewed interest in Hadronization
- New experimental information, in particular in the HF sector
- Hadronic resonances play an important role in many aspects of heavy ion collisions. We expect this to be also the case for hadronization.

- In this talk we study the inclusion of meson resonances into quark recombination.
- Outlook on two more topics:
 - Polarized mesons from orbital angular momentum
 - Hadronic rescattering of hadrons from hard processes

HYBRID HADRONIZATION

- A hybrid of string fragmentation and recombination.
- Interpolates smoothly in between, two limits:
 - Dilute systems → Dominance of string fragmentation
 - Dense systems → Dominance of quark recombination

K. C. Han, R. J. Fries, C. M. Ko, Jet Fragmentation via Recombination of Parton Showers, Phys.Rev.C 93, 045207 (2016)

- Monte Carlo implementation available, e.g implemented in JETSCAPE since v2.0.
- Necessary ingredients: probabilities for coalescence of quarks based on their phase space coordinates.
- Need to compute the necessary probabilities for meson resonances.

SETTING UP THE PROBLEM

- Quarks/antiquarks = wave packets in phase space
- For simplicity: Gaussian wave packets around centroid phase space coordinates (\vec{r}_i, \vec{p}_i) , of given width δ . Color and spin information might be available (otherwise treated statistically).

- \circ Short range interaction modeled by isotropic harmonic oscillator potential of width 1/
 u.
- Use the Wigner formalism in phase space. We need angular momentum eigenstates.

SETTING UP THE PROBLEM

- Quarks/antiquarks = wave packets in phase space
- \circ For simplicity: Gaussian wave packets around centroid phase space coordinates (\vec{r}_i, \vec{p}_i) , of given width δ . Color and spin information might be available (otherwise treated statistically).

- \circ Short range interaction modeled by isotropic harmonic oscillator potential of width 1/
 u.
- Use the Wigner formalism in phase space. We need angular momentum eigenstates.

3D-HARMONIC OSCILLATOR IN PHASE SPACE

 \circ Wigner distribution in phase space for given wave functions ψ_1,ψ_2 :

$$W_{\psi_2,\psi_1}(\mathbf{r},\mathbf{q}) = \int \frac{d^3 \mathbf{r}'}{(2\pi\hbar)^3} e^{\frac{i}{\hbar}\mathbf{r}'\cdot\mathbf{q}} \,\psi_2^* \left(\mathbf{r} + \frac{1}{2}\mathbf{r}'\right) \psi_1 \left(\mathbf{r} - \frac{1}{2}\mathbf{r}'\right)$$

- (Diagonal) results known for the 3-D harmonic oscillator: S. Shlomo, M. Prakash, *Phase space distribution of an N -dimensional harmonic oscillator*, Nucl. Phys. A 357,157 (1981); formally known but hard to use.
- In 2-D: R. Simon, G. S. Agarwal, Wigner representation of Laguerre-Gaussian beams, Opt. Lett. 25, 1313 (2000); results are in closed form and elegant!
- Recalculate Wigner distributions using an expansion of angular momentum eigenstates in products of 1D-states.

3D-HARMONIC OSCILLATOR IN PHASE SPACE

Use the well-studied 1D-phase space distributions to build the 3D ones

$$W_{kl}(\mathbf{r}, \mathbf{q}) = \sum_{\substack{n_1, n_2, n_3 \\ n'_1, n'_2, n'_3}} D_{kl} \binom{n_1, n_2, n_3}{n'_1, n'_2, n'_3} W_{n'_1 n_1}(r_1, q_1) W_{n'_2 n_2}(r_2, q_2) W_{n'_3 n_3}(r_3, q_3)$$
Three off-diagonal 1-D

Radial quantum number k, angular momentum quantum number l

$$D_{kl}\binom{n_1, n_2, n_3}{n'_1, n'_2, n'_3} = \frac{1}{2l+1} \sum_{m} C^*_{klm, n'_1 n'_2 n'_3} C_{klm, n_1 n_2 n_3}$$

Averaging magnetic quantum numbers m, since not interested in polarization.

Expansion coefficients for angular momentum eigenstates in terms of

Wigner distributions

products of 1-D states

 The off-diagonal 1-D Wigner distributions are known [T. Curtright, T. Uematsu, C. K. Zachos, J. Math. Phys. 42 (2001)]

$$W_{n'n}(x,q) = \frac{(-1)^{n'}}{\pi \hbar} \sqrt{\frac{n'}{n}} u^{\frac{n-n'}{2}} e^{-u/2} e^{-i(n-n')\zeta} L_{n'}^{(n-n')}(u)$$

$$u = 2(q^2/(\hbar^2\nu^2) + \nu^2 x^2)$$

$$\tan \zeta = q/(\hbar \nu^2 x)$$

WIGNER DISTRIBUTIONS

- Recall that Wigner distributions can be negative.
- \circ When summed over m, they only depend on magnitudes of position and momentum, and the relative angle θ between.
- Examples of a few lowest states

vr

vr

COALESCENCE

Probability for coalescence of Gaussian wave packets using the Wigner distributions.

$$\tilde{\mathcal{P}}_{klm,\mathbf{P}_f} = (2\pi\hbar)^6 \int d^3\mathbf{x}_1 d^3\mathbf{x}_2 d^3\mathbf{k}_1 d^3\mathbf{k}_2 \tilde{W}_{\mathbf{P}_f}(\mathbf{K}) W_{klm} (\Delta \mathbf{x}, \Delta \mathbf{k}) W_1(\mathbf{x}_1, \mathbf{k}_1) W_2(\mathbf{x}_2, \mathbf{k}_2)$$

$$\mathcal{P}_{kl} = \sum_{m} \int d^{3}\mathbf{P}_{f} \tilde{\mathcal{P}}_{klm,\mathbf{P}_{f}}$$

Wigner for center of mass motion.

Bound state Wigner distribution; only depends on relative phase space corrdinates

Wigner distributions of two Gaussian wave packets.

- \circ Again sum over m, since we are not interested in polarization here (see remark later).
- Results discussed here for $1/\nu = 2\delta$ (relation between quark wave packet width δ and harmonic oscillator length scale $1/\nu$).

See M. Kordell, R. J. Fries, C. M. Ko, Annals Phys. 443 (2022) 168960 for full results.

COALESCENCE PROBABILITIES

- \circ Probabilities depend on the relative coordinates of the wave packet centroids, called r and q here.
- \circ θ = angle between r and q.

COALESCENCE PROBABILITIES

- O Probabilities can be written in terms of just two variables: total phase space distance squared v and total angular momentum squared t.
 - $v = \frac{\nu^2 r^2}{2} + \frac{p^2}{2\hbar^2 \nu^2},$ $t = \frac{1}{\hbar^2} \left[p^2 r^2 (\mathbf{p} \cdot \mathbf{r})^2 \right] = \frac{1}{\hbar^2} L^2$
- $\mathcal{P}_{00} = e^{-v},$ $\mathcal{P}_{01} = e^{-v}v,$ $\mathcal{P}_{02} = \frac{1}{2}e^{-v}\left(\frac{2}{3}v^2 + \frac{1}{3}t\right)$ $\mathcal{P}_{10} = \frac{1}{2}e^{-v}\left(\frac{1}{3}v^2 \frac{1}{3}t\right)$

- If summed over states with the same energy, the probabilities are simply Poissonian given by phase space distance
 - Same as in 1-D
- Energy degeneracy broken by orbital angular momentum of the quarks. t makes an intuitive connection between the relative angular momentum of the incoming quarks and the quantum number l of their bound state.

$$\sum_{2k+l=N} \mathcal{P}_{kl} = e^{-v} \frac{v^N}{N!}$$

Both are states with N=3

EXCITED MESONS AND THEIR DECAYS

- We include excited mesons up to N = k + 2l = 4.
- Hybrid Hadronization uses PYTHIA 8 for decays: available excited states are limited, but the user can easily add more.
- Many more resonances in the PDG -> add to the code
- Add as of yet unconfirmed bound states: extrapolate unknown properties.

$\mathbf{Light/Strange} \ \mathbf{n} = 1 \ (\mathbf{k} = 0)$											
		L=0		L=1		L=2		L=3		L=4	
	I=1	$\begin{array}{c} xx1 \\ 1^{1}S_{0} \\ 0^{-+} \end{array}$	π	$10xx3$ $1^{1}P_{1}$ 1^{+-}	$b_1(1235)$	$10xx5$ $1^{1}D_{2}$ 2^{-+}	$\pi_2(1670)$	$10xx7$ $1^{1}F_{3}$ 3^{+-}	$b_3(2013)^{\dagger}$	$10xx9$ $1^{1}G_{4}$ 4^{-+}	$\pi_4(2306)^{\dagger}$
L=J	$I = \frac{1}{2}$		K		K_{1B}		$K_2(1770)$		$K_{3B}(2157)^{\dagger}$		$K_{4B}(2485)^{\dagger}$
S=0	I = 0		22		$h_1(1415)$		$\eta_2(1870)$		$h_3(2234)^{\dagger}$		$\eta_4(2547)^{\dagger}$
	I = 0	U	$\eta'(958)$		$h_1(1170)$		$\eta_2(1645)$		$h_3'(2011)^{\dagger}$		$\eta_4'(2320)^{\dagger}$
	I=1	1 1 /	xx5	$a_2(1320)$	xx7	$\rho_3(1690)$	xx9	$a_4(1970)$	xx8 [‡]	$\rho_5(2350)$	
J=L+1	$I = \frac{1}{2}$		$K^*(892)$	$\begin{array}{c} xx3 \\ 1^3P_2 \\ 2^{++} \end{array}$	$K_2^*(1430)$	$\begin{bmatrix} 1^3D_3 \\ 3^{} \end{bmatrix}$	$K_3^*(1780)$	1^3F_4 4^{++}	$K_4^*(2045)$	$1^{3}G_{5}$ $5^{}$	$K_5^*(2380)$
S=1	I = 0		$\phi(1020)$		$f_2'(1525)$		$\phi_3(1850)$		$f_4(2300)$		$\phi_5(2584)^{\dagger}$
	I = 0		$\omega(782)$	_ <u></u>	$f_2(1270)$	J	$\omega_3(1670)$		$f_4(2050)$		$\omega_5(2323)^{\dagger}$
	I=1			20xx3 1 ³ P ₁ 1 ⁺⁺	$a_1(1260)$	$20xx5$ $1^{3}D_{2}$ $2^{}$	$\rho_2(1715)^{\dagger}$	$20xx7$ $1^{3}F_{3}$ 3^{++}	$a_3(2072)^{\dagger}$	$20xx9$ $1^{3}G_{4}$ $4^{}$	$\rho_4(2376)^{\dagger}$
J=L	$I = \frac{1}{2}$				K_{1A}		$K_2(1820)$		$K_{3A}(2160)^{\dagger}$		$K_{4A}(2453)^{\dagger}$
S=1	I = 0				$f_1(1420)$		$\phi_2(1835)^{\dagger}$		$f_3(2173)^{\dagger}$		$\phi_4(2464)^{\dagger}$
	I = 0				$f_1(1285)$		$\omega_2(1733)^{\dagger}$		$f_3'(2087)^{\dagger}$		$\omega_4(2389)^{\dagger}$
J=L-1 S=1	I=1			10xx1	$a_0(1450)$	30xx3	$\rho(1700)$	30xx5	$a_2(1918)^{\dagger}$	30xx7	$\rho_3(2113)^{\dagger}$
	$I = \frac{1}{2}$		$\begin{bmatrix} 1^3 P_0 \\ 0^{++} \end{bmatrix}$	$K_0^*(1430)$	1^3D_1 $1^{}$	$K^*(1680)$	$1^{3}F_{2}$	$K_2^*(1897)^{\dagger}$	1^3G_3	$K_3^*(2092)^{\dagger}$	
	I = 0			$f_0(1710)$		$\phi_1(1931)^{\dagger}$		$f_2(2129)^{\dagger}$	$\frac{1}{3}^{}$	$\phi_3(2310)^{\dagger}$	
	I = 0	0		$f_0(1370)$		$\omega(1650)$		$f_2'(1889)^{\dagger}$	٠ ا	$\omega_3(2101)^{\dagger}$	

PDG states

Unconfirmed states

EXCITED MESONS AND THEIR DECAYS

Use scaling laws for masses

$$M^2 = M_0^2 + \alpha k$$
$$M^2 = M_0^2 + \beta l,$$

A. V. Anisovich, V. V. Anisovich, A. V. Sarantsev, Systematics of qqbar states in the (n,M²) and (J,M²) planes, Phys. Rev. D 62, 051502 (2000)

 Decays from minimum set of assumptions: Flavor/OZI, G-parity, phase space weights (up to 5-particle decay) [R. H. Milburn, Rev. Mod. Phys. 27, 1 (1955)], isospin algebra

											1. P. C.	
20qq7 (S=1,L=3)	1^3	^F_3										
20217	a 3	(2072)+ 8	a_3(2072)-	0.3121569535	pi+pi+pi-	211 211 -211	0.2081046356	pi+pi0pi0	211 111 111	0.1370660614	pi+pi+pi+pi-pi-	211 211 211 -2
						244 444 244			444 444 444			244 244 444 6
20117	a_3	(2072)0		0.4162092713	pi+piupi-	211 111 -211	0.1040523178	ριυριυριυ	111 111 111	0.3015491729	pı+pı+pıupı-pı-	211 211 111 -2
20327	K_3	3A(2160)+	K_3A(2160)-	0.02969148171	K+pi0	321 111	0.05938385418	K0pi+	311 211	0.1882397025	K+pi+pi-	321 211 -211
20317	K_3	3A(2160)0	<_3A(2160)bar0	0.02969148171	K0pi0	311 111	0.05938385418	K+pi-	321 -211	0.1882397025	K0pi+pi-	311 211 -211
20337	f_3((2173)		0.0473472313	pi+pi-	211 -211	0.02367326055	pi0pi0	111 111	0.3715918033	pi+pi+pi-pi-	211 211 -211 -
20227	f 3'	(2087)		0.05917570104	pi+pi-	211 -211	0.0295874067	0iq0iq	111 111	0.3644947569	pi+pi+pi-pi-	211 211 -211 -

FIRST TEST: ABUNDANCES OF RESONANCES

- Use parton states from running PYTHIA 8 e+e- at 91 GeV
- Hybrid Hadronization with N = 4, no decays;
- Spin treated statistically, color flow from PYTHIA.

(Hadrons from recombination only)

FIRST TEST: SPECTRA

- \circ e+e- at 91 GeV, N=4, decays=on
- \circ Left panel: N=4 vs N=0 means more recombination, less fragmentation

Right panel: Competing mechanisms: increasing N increases low momentum decay products, also allows for more recombination at large x_e .

SIDE NOTE: POLARIZATION

- What if we don't sum over magnetic quantum numbers and ask for the polarization of the meson?
- \circ Probabilities are sensitive to the angular momentum component L_z .
- Conclusion: if the collective motion of the quarks at carries net orbital angular momentum, hadronization can give you correspondingly polarized p- and dwave mesons.

$$P_{011} = e^{-v} \left(\frac{1}{2} v_T + \frac{L_z}{2\hbar} \right)$$

$$P_{011} = e^{-v} v_L$$

 L_z selects a preferred polarization of the meson

$$P_{01-1} = e^{-v} \left(\frac{1}{2} v_T - \frac{L_z}{2\hbar} \right)$$

 v_T , v_L : squared phase space distance perpendicular and parallel to the quantization axis.

PREVIEW: HADRONIC RESCATTERING FOR HARD PROBES

- Hybrid Hadronization with excited states and other improvements will be released with JETSCAPE 3.6
- One other new trick: hadrons from Hybrid Hadronization/hard probes can now feed into the SMASH hadronic afterburner
- Allows for systematic studies of hadronic rescattering for Hard Probes.
- See poster by Hendrik Roch (530).

Rescattering ->
Flow-like distortion
of the spectrum

 e^+e^- with SMASH afterburner

Decays only vs decays+rescattering (two different scenarios)

SUMMARY

- We have laid the foundation to include excited meson states into the recombination formalism:
 - Coalescence probabilities for Gaussian wave packets have been calculated.
 - Suitble excited meson lists have been curated.
- \circ First test in e⁺e⁻: p- and d-wave mesons are important hadronization channels.
- Explore effects in systems beyond e⁺e⁻
- Adding baryons: tedious but doable
- Novel manifestation of polarization effects from orbital angular motion of quarks?
- SMASH now accepts Hybrid Hadronization hadrons in JETSCAPE: hadronic rescattering for hard probes

BACKUP

JETS IN HYBRID HADRONIZATION

- Decay gluons provisionally into qqbar pairs (gluons whose quarks don't recombine are later reformed)
- Go through all possible quark pairs/triplets, compute the recombination probability and sample it. Recombine the pair/triplet if successful.
- Rejected partons again form acceptable string systems (only color singlets removed!)
- Remnant strings are fragmented by PYTHIA 8.

Remnant strings from color flow

String Fragmentation

3D-HARMONIC OSCILLATOR IN PHASE SPACE

Express angular momentum eigenstates through an expansion in products of 1D-states

Radial, orbital angular momentum and magnetic quantum nubmers

$$\Psi_{klm}(\mathbf{r}) = \sum_{n_1 n_2 n_3} C_{klm, n_1 n_2 n_3} \Phi_{n_1 n_2 n_3}(\mathbf{r})$$

Three 1D-quantum numbers

Tedious but straight forward, e.g. for k=0:

$$C_{0lm,n_1n_2n_3} = \sqrt{\frac{(l+m)!(l-m)!}{2^{2l}n_1!n_2!n_3!(2k+2l-1)!!}} \ 2^{n_3}i^{n_2} \binom{n_2}{\kappa} {}_2F_1(-\kappa,-n_1;1-\kappa+n_2;-1). \qquad \kappa = \frac{1}{2}(l+m-n_3)$$

$$\kappa = \frac{1}{2} \left(l + m - n_3 \right)$$

Two conditions for non-zero coefficients:

$$N \equiv n_1 + n_2 + n_3 = 2k + l$$

$$l + m - n_3 = 0 \bmod 2$$

Condition for matching energy of states