

\section*{EXCITED HADRON CHANNELS} IN HADRONIZATION

HADRONIZATION

- Renewed interest in Hadronization
- New experimental information, in particular in the HF sector
- Hadronic resonances play an important role in many aspects of heavy ion collisions. We expect this to be also the case for hadronization.

- In this talk we study the inclusion of meson resonances into quark recombination.
- Outlook on two more topics:
- Polarized mesons from orbital angular momentum
- Hadronic rescattering of hadrons from hard processes

HYBRID HADRONIZATION

- A hybrid of string fragmentation and recombination.
- Interpolates smoothly in between, two limits:
- Dilute systems \rightarrow Dominance of string fragmentation
- Dense systems \rightarrow Dominance of quark recombination
K. C. Han, R. J. Fries, C. M. Ko, Jet Fragmentation via Recombination of Parton Showers, Phys.Rev.C 93, 045207 (2016)

- Monte Carlo implementation available, e.g implemented in JETSCAPE since v2.0.
- Necessary ingredients: probabilities for coalescence of quarks based on their phase space coordinates.
- Need to compute the necessary probabilities for meson resonances.

SETTING UP THE PROBLEM

- Quarks/antiquarks = wave packets in phase space
- For simplicity: Gaussian wave packets around centroid phase space coordinates (\vec{r}_{i}, \vec{p}_{i}), of N given width δ. Color and spin information might be available (otherwise treated statistically).

Attractive force

- Short range interaction modeled by isotropic harmonic oscillator potential of width $1 / v$. Use the Wigner formalism in phase space. We need angular momentum eigenstates.

SETTING UP THE PROBLEM

- Quarks/antiquarks = wave packets in phase space
- For simplicity: Gaussian wave packets around centroid phase space coordinates (\vec{r}_{i}, \vec{p}_{i}), of \checkmark given width δ. Color and spin information might be available (otherwise treated statistically).

- Short range interaction modeled by isotropic harmonic oscillator potential of width $1 / v$. Use the Wigner formalism in phase space. We need angular momentum eigenstates.

3D-HARMONIC OSCILLATOR IN PHASE SPACE

- Wigner distribution in phase space for given wave functions ψ_{1}, ψ_{2} :

- (Diagonal) results known for the 3-D harmonic oscillator: S. Shlomo, M. Prakash, Phase space distribution of an N -dimensional harmonic oscillator, Nucl. Phys. A 357,157 (1981); formally known but hard to use.
- In 2-D: R. Simon, G. S. Agarwal, Wigner representation of Laguerre-Gaussian beams, Opt. Lett. 25, 1313 (2000); results are in closed form and elegant!
- Recalculate Wigner distributions using an expansion of angular momentum eigenstates in products of 1D-states.

3D-HARMONIC OSCILLATOR IN PHASE SPACE

- Use the well-studied 1D-phase space distributions to build the 3D ones

- The off-diagonal 1-D Wigner distributions are known [T. Curtright, T. Uematsu, C. K. Zachos, J. Math. Phys. 42 (2001)]

$$
W_{n^{\prime} n}(x, q)=\frac{(-1)^{n^{\prime}}}{\pi \hbar} \sqrt{\frac{n^{\prime}}{n}} u^{\frac{n-n^{\prime}}{2}} e^{-u / 2} e^{-i\left(n-n^{\prime}\right) \zeta} L_{n^{\prime}}^{\left(n-n^{\prime}\right)}(u)
$$

WIGNER DISTRIBUTIONS

- Recall that Wigner distributions can be negative.
- When summed over m, they only depend on magnitudes of position and momentum, and the relative angle θ between.
- Examples of a few lowest states

$\hbar^{3} \mathrm{~W}(\mathrm{r}, \mathrm{q}), \mathrm{k}=0, \mathrm{l}=2, \cos \theta=0.5$

$W_{00}=\frac{1}{\pi^{3} \hbar^{3}} e^{-\frac{g^{2}}{\hbar^{2} \nu^{2}}-\nu^{2} r^{2}}$,
$W_{01}=W_{00}\left(-1+\frac{2}{3} \nu^{2} r^{2}+\frac{2}{3} \frac{q^{2}}{\hbar^{2} \nu^{2}}\right)$
$W_{02}=W_{00}\left(1+\frac{4}{15} \nu^{4} r^{4}-\frac{4}{3} \nu^{2} r^{2}+\frac{16}{15} \frac{r^{2} q^{2}}{\hbar^{2}}\right.$ $\left.-\frac{8}{15} \frac{(\mathbf{r} \cdot \mathbf{q})^{2}}{\hbar^{2}}-\frac{4}{3} \frac{q^{2}}{\hbar^{2} \nu^{2}}+\frac{4}{15} \frac{q^{4}}{\hbar^{4} \nu^{4}}\right)$

0.02
0.01

COALESCENCE

- Probability for coalescence of Gaussian wave packets using the Wigner distributions.

$$
\tilde{\mathcal{P}}_{k l m, \mathbf{P}_{f}}=(2 \pi \hbar)^{6} \int d^{3} \mathbf{x}_{1} d^{3} \mathbf{x}_{2} d^{3} \mathbf{k}_{1} d^{3} \mathbf{k}_{2} \tilde{W}_{\mathbf{P}_{f}}(\mathbf{K}) W_{k l m}(\Delta \mathbf{x}, \Delta \mathbf{k}) W_{1}\left(\mathbf{x}_{1}, \mathbf{k}_{1}\right) W_{2}\left(\mathbf{x}_{2}, \mathbf{k}_{2}\right)
$$

$$
\mathcal{P}_{k l}=\sum_{m} \int d^{3} \mathbf{P}_{f} \tilde{\mathcal{P}}_{k l m, \mathbf{P}_{f}}
$$

Bound state Wigner distribution;
Wigner distributions of two Gaussian wave packets.

Wigner for center of mass motion.

- Again sum over m, since we are not interested in polarization here (see remark later).
- Results discussed here for $1 / v=2 \delta$ (relation between quark wave packet width δ and harmonic oscillator length scale $1 / v$).

See M. Kordell, R. J. Fries, C. M. Ko, Annals Phys. 443 (2022) 168960 for full results.

COALESCENCE PROBABILITIES

- Probabilities depend on the relative coordinates of the wave packet centroids, called r and q here.
- $\theta=$ angle between r and q.

COALESCENCE PROBABILITIES

- Probabilities can be written in terms of just two variables: total phase space distance squared v and total angular momentum squared t.

$$
\begin{aligned}
v & =\frac{\nu^{2} r^{2}}{2}+\frac{p^{2}}{2 \hbar^{2} \nu^{2}} \\
t & =\frac{1}{\hbar^{2}}\left[p^{2} r^{2}-(\mathbf{p} \cdot \mathbf{r})^{2}\right]=\frac{1}{\hbar^{2}} L^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{P}_{00}=e^{-v} \\
& \mathcal{P}_{01}=e^{-v} v \\
& \mathcal{P}_{02}=\frac{1}{2} e^{-v}\left(\frac{2}{3} v^{2}+\frac{1}{3} t\right) \\
& \mathcal{P}_{10}=\frac{1}{2} e^{-v}\left(\frac{1}{3} v^{2}-\frac{1}{3} t\right)
\end{aligned}
$$

- If summed over states with the same energy, the probabilities are simply Poissonian given by phase space distance

Both are states with $\mathrm{N}=3$

EXCITED MESONS AND THEIR DECAYS

- We include excited mesons up to $N=k+2 l=4$.
- Hybrid Hadronization uses PYTHIA 8 for decays: available excited states are limited, but the user can easily add more.
- Many more resonances in the PDG -> add to the code
- Add as of yet unconfirmed bound states: extrapolate unknown properties.

EXCITED MESONS AND THEIR DECAYS

- Use scaling laws for masses

$$
\begin{aligned}
& M^{2}=M_{0}^{2}+\alpha k \\
& M^{2}=M_{0}^{2}+\beta l
\end{aligned}
$$

A. V. Anisovich, V. V. Anisovich, A. V. Sarantsev,

Systematics of qqbar states in the (n, M^{2}) and (J, M^{2}) planes, Phys. Rev. D 62, 051502 (2000)

- Decays from minimum set of assumptions: Flavor/OZI, G-parity, phase space weights (up to 5-particle decay) [R. H. Milburn, Rev. Mod. Phys. 27, 1 (1955)], isospin algebra

FIRST TEST: ABUNDANCES OF RESONANCES

- Use parton states from running PYTHIA 8 e+e- at 91 GeV
- Hybrid Hadronization with $N=4$, no decays;
- Spin treated statistically, color flow from PYTHIA.

Orbital angular mom.
Total angular mom.

(Hadrons from recombination only)

FIRST TEST: SPECTRA

- e+e- at $91 \mathrm{GeV}, N=4$, decays $=$ on
- Left panel: $N=4$ vs $N=0$ means more recombination, less fragmentation

- Right panel: Competing mechanisms: increasing N increases low momentum decay products, also allows for more recombination at large x_{e}.

SIDE NOTE: POLARIZATION

- What if we don't sum over magnetic quantum numbers and ask for the polarization of the meson?

$$
P_{011}=e^{-v}\left(\frac{1}{2} v_{T}+\frac{L_{z}}{2 \hbar}\right)
$$

$$
P_{011}=e^{-v} v_{L}
$$

- Probabilities are sensitive to the angular momentum component L_{z}.
- Conclusion: if the collective motion of the quarks at carries net orbital angular momentum, hadronization can give you correspondingly polarized p - and d wave mesons.
$v_{T}, v_{L}:$ squared phase space distance perpendicular and parallel to the quantization axis.

PREVIEW: HADRONIC RESCATTERING FOR HARD PROBES

- Hybrid Hadronization with excited states and other improvements will be released with JETSCAPE 3.6
o One other new trick: hadrons from Hybrid Hadronization/hard probes can now feed into the SMASH hadronic afterburner
- Allows for systematic studies of hadronic rescattering for Hard Probes.
- See poster by Hendrik Roch (530).
$e^{+} e^{-}$with SMASH afterburner
Decays only vs decays+rescattering (two different scenarios)

SUMMARY

- We have laid the foundation to include excited meson states into the recombination formalism:
- Coalescence probabilities for Gaussian wave packets have been calculated.
- Suitble excited meson lists have been curated.

○ First test in $\mathrm{e}^{+} \mathrm{e}^{-}: \boldsymbol{p}$ - and \boldsymbol{d}-wave mesons are important hadronization channels.

- Explore effects in systems beyond $\mathrm{e}^{+} \mathrm{e}^{-}$
- Adding baryons: tedious but doable
- Novel manifestation of polarization effects from orbital angular motion of quarks?
- SMASH now accepts Hybrid Hadronization hadrons in JETSCAPE: hadronic rescattering for hard probes

BACKUP

JETS IN HYBRID HADRONIZATION

- Decay gluons provisionally into qqbar pairs (gluons whose quarks don't recombine are later reformed)
- Go through all possible quark pairs/triplets, compute the recombination probability and sample it. Recombine the pair/triplet if successful.
- Rejected partons again form acceptable string systems (only color singlets removed!)
- Remnant strings are fragmented by PYTHIA 8.

Remnant strings from color flow
String Fragmentation

3D-HARMONIC OSCILLATOR IN PHASE SPACE

- Express angular momentum eigenstates through an expansion in products of 1D-states

Radial, orbital angular momentum and magnetic quantum nubmers

- Tedious but straight forward, e.g. for $k=0$:

- Two conditions for non-zero coefficients:

$$
N \equiv n_{1}+n_{2}+n_{3}=2 k+l
$$

$$
l+m-n_{3}=0 \bmod 2
$$

Condition for matching energy of states

