Lee-Yang singularities, series expansions and the critical point

Gökçe Başar
University of North Carolina, Chapel Hill

Quark Matter 23, Houston, September 3-9, 2023

Based on:
GB PRL 127 (2021) 17, 171603
GB, G. Dunne (UConn), Z. Yin (UNC \rightarrow Stanford) PRD 105 (2022) 10, 105002

Motivations

Motivations

8 B9

$$
\binom{r}{h}=\left(\begin{array}{ll}
r_{T} & r_{\mu} \\
h_{T} & h_{\mu}
\end{array}\right)\binom{T-T_{c}}{\mu-\mu_{C}}:=M\binom{T-T_{c}}{\mu-\mu_{C}}
$$

Given the e.o.s. as truncated Taylor series around $\mu=0$, what can we say about the critical e.o.s?

Lee-Yang edge singularities

- The equation of state has complex singularities [Lee-Yang, 52']
- Zeroes of partition function $\mathscr{Z}(\zeta)\left(\zeta=e^{\mu / T}\right.$: fugacity $)$
- Coalesce into branch cuts in thermodynamic limit
- Pinch the real axis at a second order transition
- Closest singularity to origin ("extended analyticity conjecture")
[Fonseca, Zamolodchikov '02, An, Mesterházy, Stephanov '17]

[Stephanov, 0603014]

Lee Yang edge singularity

- The scaling e.o.s, $f_{s}(w)$, has singularities at $w= \pm i w_{L Y} \quad\left(w:=h r^{-\beta \delta}\right)$

- The e.o.s. near the LY singularity: $M(w) \sim\left(w \pm i w_{L Y}\right)^{\sigma_{L Y}}, \quad(M$: magnetization) $\sigma_{L Y, d=3} \approx 0.1, \quad \sigma_{L Y, d=6}=1 / 2$ (mean field)
[Fisher, '74; An, Stephanov, Mesterházy '16; Connelly, Johnson, Mukherjee, Skokov '20]

When life gives you Taylor series...

Taylor series: $\chi\left(\mu^{2}\right)=\sum_{n=0}^{N} c_{2 n} \mu^{2 n}$

Singularity of the function

Let's try this on an exactly solvable model massive Gross-Neveu model

Preliminary results on QCD at the end..
$\begin{aligned} & \text { Padé approximant } \\ & \text { (diagonal) }\end{aligned} \mathrm{P}_{[N / 2, N / 2]} f\left(\mu^{2}\right)=\frac{P_{N / 2}\left(\mu^{2}\right)}{Q_{N / 2}\left(\mu^{2}\right)}$
$\longleftrightarrow \quad$ poles/zeroes of Padé

When life gives you Taylor series...

Problem: Padé is fairly good away from the singularity but fails badly near a singularity / branch cut. Not a glitch, a theorem...
[Stahl' 97, Costin Dunne '20]
GN model

Padé cannot reconstruct the e.o.s. near and beyond the radius of convergence! $\quad\left(\mu^{2} \gtrsim\left|\mu_{L Y}^{2}\right|\right)$

Unphysical poles

Conformal Maps

Solution: Do Padé after a conformal map

- Captures the singular behavior, no unphysical poles along real axis
- Significantly better approximation than Padé

"conformal Padé"

$$
\mathrm{P} \chi(T, \phi(\zeta))=\left.\frac{\tilde{p}_{0}(T)+\tilde{p}_{1}(T) \zeta+\ldots+\tilde{p}_{N / 2}(T) \zeta^{N}}{\tilde{q}_{0}(T)+\tilde{q}_{1}(T) \zeta+\ldots+\tilde{q}_{N / 2}(T) \zeta^{N}}\right|_{\zeta=\phi^{-1}\left(\mu^{2}\right)}
$$

Conformal Maps

- conformal Padé does not introduce unphysical poles on the real axis!
- captures the e.o.s. beyond the radius of convergence

Lee-Yang trajectory

- Find $\mu_{L Y}^{2}(T)$ from poles of the conformal-Padé (GN model)

$$
\mu_{L Y}(T) \approx \mu_{c}-\frac{h_{T}}{h_{\mu}}\left(T-T_{c}\right)+i w_{L Y} \frac{r_{\mu}^{3 / 2}}{h_{\mu}}\left(\frac{r_{T}}{r_{\mu}}-\frac{h_{T}}{h_{\mu}}\right)^{3 / 2}\left(T-T_{c}\right)^{3 / 2}
$$

$$
w_{L Y}=\frac{2}{3 \sqrt{3}}
$$

- Extract μ_{c}, T_{c}, crossover slope, $\frac{h_{T}}{h_{\mu}}$, and $\frac{r_{\mu}^{3 / 2}}{h_{\mu}}\left(\frac{r_{T}}{r_{\mu}}-\frac{h_{T}}{h_{\mu}}\right)^{3 / 2}$

Ising parameters

$$
\begin{array}{|ccccc|}
\mu_{L Y}(T) \approx \mu_{c}-\frac{h_{T}}{h_{\mu}}\left(T-T_{c}\right)+i w_{L Y} \frac{r_{\mu}^{3 / 2}}{h_{\mu}}\left(\frac{r_{T}}{r_{\mu}}-\frac{h_{T}}{h_{\mu}}\right)^{3 / 2}\left(T-T_{c}\right)^{3 / 2} & w_{L Y}=\frac{2}{3 \sqrt{3}} \\
\hline \text { exact } & 0.192 & 0.717 & 0.249 & 4.684 \\
\hline \text { conf. Padé }(N=21) & 0.195 & 0.716 & 0.248 & 4.323 \\
\hline \text { conf. Padé }(N=11) & 0.185 & 0.707 & 0.225 & 3.666
\end{array}
$$

Uniformization Map

$$
\begin{aligned}
& w=h r^{-\beta \delta} \\
& z=M r^{-\beta}
\end{aligned}
$$

High Temperature ($T>T_{c}$)

high T sheet

$$
r>0
$$

$$
z(w)=w-w^{3}+3 w^{5}-12 w^{7}+\ldots
$$

high T expansion

Ising model: $\quad w=F(z)$
$F(z)=z+z^{3} \quad($ mean field $)$

Low Temperature ($T<T_{c}$)

Uniformization: crossing the branch cut

w plane

high T sheet

$$
r>0
$$

$$
w \rightarrow w(\tau)=i(-1+2 \lambda(\tau))
$$

$$
\left.\lambda(\tau)=\frac{\theta_{2}^{4}(\tau)}{\theta_{3}^{4}(\tau)} \quad \text { (elliptic modular function }\right)
$$

$$
\begin{gathered}
\tau(\zeta)=i\left(\frac{1+i \zeta}{1-i \zeta}\right) \\
\theta_{2}(\tau)=\sum_{n=1}^{\infty} e^{2 \pi i \tau(n+1 / 2)^{2}}, \quad \theta_{3}(\tau)=\sum_{n=1}^{\infty} e^{2 \pi i \tau n^{2}}
\end{gathered}
$$

Uniformization: crossing the branch cut

w plane

low T sheet $r<0$

Low T sheet $=$ Schwartz reflection of the high T sheet (modular transformation)

Uniformization: crossing the branch cut

Moving within unit circle (smooth)

Jumping through sheets

Uniformization: crossing the branch cut

Preliminary Results for QCD

Taylor coefficients from Hot QCD collaboration up to μ_{B}^{8} [Bollweg et al. 2202.09184]

LY Trajectory for $Q C D$

$$
\mu_{L Y}(T) \approx \mu_{c}-\frac{h_{T}}{h_{\mu}}\left(T-T_{c}\right)+i w_{c} \frac{r_{\mu}^{\beta \delta}}{h_{\mu}}\left(\frac{r_{T}}{r_{\mu}}-\frac{h_{T}}{h_{\mu}}\right)^{\beta \delta}\left(T-T_{c}\right)^{\beta \delta}
$$

fits:

$$
\operatorname{Re} \mu_{L Y}(T)=a\left(T-T_{C}\right)^{2}+b\left(T-T_{C}\right)+c
$$

$$
\operatorname{Im} \mu_{L Y}(T)=c w_{c}\left(T-T_{C}\right)^{\beta \delta}
$$

$\beta \delta \approx 1.5631$ (3d Ising)
from conformal bootstrap
[Simmons-Duffin, 1502.02033]

$$
w_{c}=\left|z_{c}\right|^{-\beta \delta} \approx 0.246
$$

from functional RG
[Connelly et al, 2006.12541]
consistent with the HotQCD results [Bollweg et al. 2202.09184]

Estimations for QCD critical point

$$
\begin{aligned}
& T_{C}=103 \mathrm{MeV} \quad \mu_{C}=546 \mathrm{MeV} \\
& \text { unif. Padé } \\
& \alpha_{1}=8.15^{\circ} \quad c=2.70 \\
& \text { 2-cut } \quad T_{C}=105 \mathrm{MeV} \quad \mu_{C}=528 \mathrm{MeV} \\
& \text { conf. Padé } \alpha_{1}=6.24^{\circ} \quad c=2.92 \\
& \text { 1-cut } \quad T_{C}=105 \mathrm{MeV} \quad \mu_{C}=519 \mathrm{MeV} \\
& \text { conf. Padé } \alpha_{1}=6.43^{\circ} \quad c=2.85 \\
& T_{C}=108 \mathrm{MeV} \quad \mu_{C}=495 \mathrm{MeV} \\
& \text { Padé } \\
& \alpha_{1}=3.32^{\circ} \quad c=3.30
\end{aligned}
$$

consistent with the Bielefeld-Parma results $T_{C} \sim 90 \mathrm{MeV} \quad \mu_{C} \sim 600 \mathrm{MeV}$ [Lattice '23 talk by D. Clarke]

Conclusions and Outlook

- Combined with conformal maps, Padé approximants provide a powerful tool to extract information from truncated Taylor series.
- In the crossover region by using this tool it is possible to pin down the location of the Lee-Yang edge singularity and also extract information on the mapping parameters to critical Ising e.o.s.
- Conformal Padé gives a significantly better approximation to the e.o.s than than the Taylor series.
- Illustration in Gross-Neveu model, preliminary results for QCD.
- Better error analysis
- Extrapolation from imaginary μ, pairing with other resummation Schemes [e.g. Borsanyi et al (2102.06660), Mukherjee et al (2110.02241, 2106.03165), BielefeldParma, '21 (2110.15933), ...]
- Singularity elimination

EXTRAS

When life gives you Taylor series...

Random Matrix Model

[GB, Dunne, Yin, arXiv: 2112.14269]

When life gives you Taylor series...

Spurious poles are unavoidable in Padé when there are conjugate pair of singularities...

$$
\text { e.g. } f(z)=\frac{1}{2}\left(\frac{1}{\sqrt{z-z_{c}}}+\frac{1}{\sqrt{z-z_{c}^{*}}}\right)
$$

Iterative Algorithm

1.Estimate $\mu_{L Y}^{2}$ from Padé
2. Plug this value into the conformal map 3. Extract $\mu_{L Y}^{2}$ from conformal Padé 4.Plug the new value into the conformal map 5. Repeat.

$$
\phi(\zeta)=\left(\frac{\theta}{\pi}\right)^{\theta / \pi}\left(1-\frac{\theta}{\pi}\right)^{1-\theta / \pi} \frac{4 \mu_{L Y}^{2} \zeta}{(1+\zeta)^{2}}\left(\frac{1+\zeta}{1-\zeta}\right)^{2 \theta / \pi}
$$

Uniformization

$$
w=F(z)=z+z^{3} \quad(\text { mean field })
$$

$z_{1}(w)=-\frac{2 i}{\sqrt{3}}\left[{ }_{2} F_{1}\left(\frac{1}{3},-\frac{1}{3}, \frac{1}{2} ; \frac{1}{2}(1-i w)\right)-\right.$ c.c. $]$

$$
w(\tau)=i(-1+2 \lambda(\tau))
$$

$z_{2}(w)=\frac{2 i}{\sqrt{3}}{ }_{2} F_{1}\left(\frac{1}{3},-\frac{1}{3}, \frac{1}{2} ; \frac{1}{2}(1-i w)\right)$
$z(\tau)$: single valued
"uniformization"
$\lambda(\tau)=\frac{\theta_{2}^{4}(\tau)}{\theta_{3}^{4}(\tau)} \quad \theta_{2}(\tau)=\sum_{n=-\infty}^{\infty} e^{2 \pi i \tau(n+1 / 2)^{2}}, \quad \theta_{3}(\tau)=\sum_{n=-\infty}^{\infty} e^{2 \pi i t n^{2}}$
[Bateman, Higher Transcendal Functions I]

Uniformization

Jumping sheets in w plane

Smooth in
τ plane

Interactive realization:

Uniformization: higher Riemann sheets

