Lee-Yang singularities, series expansions and the critical point

Gökçe Başar

University of North Carolina, Chapel Hill

Quark Matter 23, Houston, September 3-9, 2023

Based on:

GB PRL 127 (2021) 17, 171603

GB, G. Dunne (UConn), Z. Yin (UNC→ Stanford) *PRD* 105 (2022) 10, 105002

Motivations

Lattice QCD
Taylor series around $\mu_B = 0$ Imaginary μ_B

Motivations

$$\begin{pmatrix} r \\ h \end{pmatrix} = \begin{pmatrix} r_T & r_\mu \\ h_T & h_\mu \end{pmatrix} \begin{pmatrix} T - T_c \\ \mu - \mu_C \end{pmatrix} := M \begin{pmatrix} T - T_c \\ \mu - \mu_C \end{pmatrix}$$

Given the e.o.s. as truncated Taylor series around μ =0, what can we say about *the critical e.o.s* ?

Lee-Yang edge singularities

- The equation of state has complex singularities [Lee-Yang, 52']
- Zeroes of partition function $\mathcal{Z}(\zeta)$ ($\zeta = e^{\mu/T}$: fugacity)
- Coalesce into branch cuts in thermodynamic limit
- Pinch the real axis at a second order transition
- Closest singularity to origin ("extended analyticity conjecture")

[Fonseca, Zamolodchikov '02, An, Mesterházy, Stephanov '17]

Lee Yang edge singularity

• The scaling e.o.s, $f_s(w)$, has singularities at $w = \pm iw_{LY}$ $(w := hr^{-\beta\delta})$

• The e.o.s. near the LY singularity: $M(w) \sim (w \pm i w_{LY})^{\sigma_{LY}}$, (M : magnetization) $\sigma_{LY,d=3} \approx 0.1$, $\sigma_{LY,d=6} = 1/2$ (mean field)

[Fisher, '74; An, Stephanov, Mesterházy '16; Connelly, Johnson, Mukherjee, Skokov '20]

When life gives you Taylor series...

Taylor series:
$$\chi(\mu^2) = \sum_{n=0}^{N} c_{2n} \mu^{2n}$$

Padé approximant (diagonal)

$$P_{[N/2,N/2]}f(\mu^2) = \frac{P_{N/2}(\mu^2)}{Q_{N/2}(\mu^2)}$$

Singularity of the function

poles/zeroes of Padé

Let's try this on an exactly solvable model massive Gross-Neveu model

Preliminary results on QCD at the end..

When life gives you Taylor series...

Problem: Padé is fairly good away from the singularity but fails badly near a singularity / branch cut. Not a glitch, a theorem...

[Stahl' 97, Costin Dunne '20]

Conformal Maps

Solution: Do Padé after a conformal map

- Captures the singular behavior, no unphysical poles along real axis
- Significantly better approximation than Padé

"conformal Padé"
$$P\chi(T,\phi(\zeta)) = \frac{\tilde{p}_0(T) + \tilde{p}_1(T)\zeta + \ldots + \tilde{p}_{N/2}(T)\zeta^N}{\tilde{q}_0(T) + \tilde{q}_1(T)\zeta + \ldots + \tilde{q}_{N/2}(T)\zeta^N} \bigg|_{\zeta = \phi^{-1}(\mu^2)}$$

Conformal Maps

- conformal Padé does not introduce unphysical poles on the real axis!
- captures the e.o.s. beyond the radius of convergence

Lee-Yang trajectory

• Find $\mu_{LY}^2(T)$ from poles of the conformal-Padé (GN model)

• Extract μ_c, T_c , crossover slope, $\frac{h_T}{h_\mu}$, and $\frac{r_\mu^{3/2}}{h_\mu} \left(\frac{r_T}{r_\mu} - \frac{h_T}{h_\mu}\right)^{3/2}$

Ising parameters

$$\mu_{LY}(T) \approx \mu_c - \frac{h_T}{h_\mu}(T - T_c) + iw_{LY} \frac{r_\mu^{3/2}}{h_\mu} \left(\frac{r_T}{r_\mu} - \frac{h_T}{h_\mu}\right)^{3/2} (T - T_c)^{3/2}$$

$$w_{LY} = \frac{2}{3\sqrt{3}}$$

	T_c	μ_c	h_T/h_μ	C
exact	0.192	0.717	0.249	4.684
conf. Padé (N=21)	0.195	0.716	0.248	4.323
conf. Padé (N=11)	0.185	0.707	0.225	3.666

Uniformization Map

$$w = hr^{-\beta\delta}$$
$$z = Mr^{-\beta}$$

Ising model: w = F(z) $F(z) = z + z^3$ (mean field)

$$F(z) = z + z^3$$
 (mean field)

High Temperature $(T>T_c)$

high T sheet r>0

$$z(w) = w - w^3 + 3w^5 - 12w^7 + \dots$$
high T expansion

Low Temperature $(T < T_c)$

w plane

high T sheet r>0

$$w \to w(\tau) = i(-1 + 2\lambda(\tau))$$

$$\lambda(\tau) = \frac{\theta_2^4(\tau)}{\theta_2^4(\tau)}$$
 (elliptic modular function)

$$\tau(\zeta) = i \left(\frac{1 + i\zeta}{1 - i\zeta} \right)$$

$$\theta_2(\tau) = \sum_{n=1}^{\infty} e^{2\pi i \tau (n+1/2)^2}, \quad \theta_3(\tau) = \sum_{n=1}^{\infty} e^{2\pi i \tau n^2}$$

low T sheet r<0

Low T sheet = Schwartz reflection of the high T sheet (modular transformation)

Jumping through sheets

Moving within unit circle

(smooth)

Preliminary Results for QCD

Taylor coefficients from Hot QCD collaboration up to μ_B^8 [Bollweg et al. 2202.09184]

LY Trajectory for QCD

$$\mu_{LY}(T) \approx \mu_c - \frac{h_T}{h_\mu}(T - T_c) + iw_c \frac{r_\mu^{\beta\delta}}{h_\mu} \left(\frac{r_T}{r_\mu} - \frac{h_T}{h_\mu}\right)^{\beta\delta} (T - T_c)^{\beta\delta}$$

fits:

$$Re\mu_{LY}(T) = a(T - T_C)^2 + b(T - T_C) + c$$

$$Im \mu_{LY}(T) = c w_c (T - T_C)^{\beta \delta}$$

 $\beta\delta \approx 1.5631$ (3d Ising) from conformal bootstrap [Simmons-Duffin, 1502.02033]

$$w_c = |z_c|^{-\beta\delta} \approx 0.246$$

from functional RG [Connelly et al, 2006.12541]

consistent with the HotQCD results [Bollweg et al. 2202.09184]

Estimations for QCD critical point

unif. Padé
$$T_C = 103 \, \mathrm{MeV} \quad \mu_C = 546 \, \mathrm{MeV}$$

$$\alpha_1 = 8.15^\circ \quad c = 2.70$$

$$T_C = 105 \, \mathrm{MeV}$$
 $\mu_C = 528 \, \mathrm{MeV}$ conf. Padé $\alpha_1 = 6.24^\circ$ $c = 2.92$

$$T_C = 105 \, \mathrm{MeV}$$
 $\mu_C = 519 \, \mathrm{MeV}$ conf. Padé $\alpha_1 = 6.43^\circ$ $c = 2.85$

$$T_C = 108 \, {
m MeV} \quad \mu_C = 495 \, {
m MeV}$$
 $\alpha_1 = 3.32^{\circ} \quad c = 3.30$

consistent with the Bielefeld-Parma results $T_C \sim 90\,\mathrm{MeV}$ $\mu_C \sim 600\,\mathrm{MeV}$ [Lattice '23 talk by D. Clarke]

Conclusions and Outlook

- Combined with conformal maps, Padé approximants provide a powerful tool to extract information from truncated Taylor series.
- •In the crossover region by using this tool it is possible to pin down the location of the *Lee-Yang edge singularity* and also extract information on the *mapping parameters to critical Ising e.o.s.*
- Conformal Padé gives a significantly better approximation to the e.o.s than than the Taylor series.
- Illustration in Gross-Neveu model, preliminary results for QCD.
- Better error analysis
- Extrapolation from imaginary μ , pairing with other resummation schemes [e.g. Borsanyi et al (2102.06660), Mukherjee et al (2110.02241, 2106.03165), Bielefeld-Parma, '21 (2110.15933), ...]
- Singularity elimination

EXTRAS

When life gives you Taylor series...

Random Matrix Model

When life gives you Taylor series...

Spurious poles are unavoidable in Padé when there are conjugate pair of singularities...

e.g.
$$f(z) = \frac{1}{2} \left(\frac{1}{\sqrt{z - z_c}} + \frac{1}{\sqrt{z - z_c^*}} \right)$$

Iterative Algorithm

- 1. Estimate μ_{LY}^2 from Padé
- 2. Plug this value into the conformal map
- 3. Extract μ_{LY}^2 from conformal Padé
- 4. Plug the new value into the conformal map
- 5. Repeat.

$$\phi(\zeta) = \left(\frac{\theta}{\pi}\right)^{\theta/\pi} \left(1 - \frac{\theta}{\pi}\right)^{1 - \theta/\pi} \frac{4\mu_{LY}^2 \zeta}{(1 + \zeta)^2} \left(\frac{1 + \zeta}{1 - \zeta}\right)^{2\theta/\pi}$$

[GB, Dunne, Yin, arXiv: 2112.14269]

Uniformization

$$w = F(z) = z + z^3$$
 (mean field)

$$z_1(w) = -\frac{2i}{\sqrt{3}} \left[{}_2F_1\left(\frac{1}{3}, -\frac{1}{3}, \frac{1}{2}; \frac{1}{2}(1-iw)\right) - \text{c.c.} \right]$$

$$z_2(w) = \frac{2i}{\sqrt{3}} {}_2F_1\left(\frac{1}{3}, -\frac{1}{3}, \frac{1}{2}; \frac{1}{2}(1-iw)\right)$$

$$\lambda(\tau) = \frac{\theta_2^4(\tau)}{\theta_3^4(\tau)} \quad \theta_2(\tau) = \sum_{n = -\infty}^{\infty} e^{2\pi i \tau (n + 1/2)^2}, \quad \theta_3(\tau) = \sum_{n = -\infty}^{\infty} e^{2\pi i \tau n^2}$$

$$w(\tau) = i(-1 + 2\lambda(\tau))$$

 $z(\tau)$: single valued

"uniformization"

[Bateman, Higher Transcendal Functions I]

Uniformization

Jumping sheets in *w* plane

Interactive realization:

https://people.math.osu.edu/costin.9/classes.html

Uniformization: higher Riemann sheets

