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Motivations

 3

(r
h) = (

rT rμ

hT hμ) (T − Tc
μ − μC) := M (T − Tc

μ − μC)
cr

os
so

ve
r

1st
or

de
r

r

h

155

hadron gas 

QGP

μB

T Q
C

D

MeV first
order

crossover

r

h

scaling region
pQCD = psing. + Preg.

3d- Ising QCD

Given the e.o.s. as truncated Taylor series around 𝜇=0, what can 
we say about the critical e.o.s ?



•The equation of state has complex singularities
•Zeroes of partition function             
•Coalesce into branch cuts in thermodynamic limit
•Pinch the real axis at a second order transition
•Closest singularity to origin (“extended analyticity conjecture”)

𝒵(ζ) (ζ = eμ/T : fugacity)

Lee-Yang edge singularities
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[Lee-Yang, 52’]

 [Fonseca, Zamolodchikov ’02,  An, Mesterházy, Stephanov ’17 ]

[Stephanov, 0603014] 

https://arxiv.org/abs/hep-lat/0603014


Lee Yang edge singularity
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(w := hr−βδ)• The scaling e.o.s, fs(w), has singularities at  w = ± iwLY

• The e.o.s. near the LY singularity: M(w) ∼ (w ± iwLY)σLY, (M : magnetization)

[Fisher, ’74;  An, Stephanov, Mesterházy ’16; Connelly, Johnson, Mukherjee, Skokov ‘20]

σLY,d=3 ≈ 0.1, σLY,d=6 = 1/2 (mean field)

μLY(T ) ≈ μc −
hT

hμ
(T − Tc) ± iwLY

(det 𝕄)βδ

hβδ+1
μ

(T − Tc)βδ

slope of the 
crossover line

         det 𝕄 ∝ (tan α2 − tan α1)(tan α1)−1

relative angle 
between r, h axes

see
[Pradeep, Stephanov ’19]

T=Tc

μ2 T>Tc



When life gives you Taylor series…
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χ(μ2) =
N

∑
n=0

c2nμ2nTaylor series: P[N/2,N/2] f(μ2) =
PN/2(μ2)
QN/2(μ2)

Padé approximant 
(diagonal)

T
T ≈ 1.6TC

Tc

μμc

Let’s try this on an exactly solvable model
massive Gross-Neveu model 

Preliminary results on QCD at the end..

Singularity of the function poles/zeroes of Padé



When life gives you Taylor series…
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exact

Padé (N=21)
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Unphysical poles 

Padé cannot reconstruct the e.o.s. near 
and beyond the radius of convergence!  (μ2 ≳ |μ2

LY | )
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Problem: Padé is fairly good away from the singularity but fails 
badly near a singularity/ branch cut. Not a glitch, a theorem… 🤷 

[Stahl’ 97, Costin Dunne ’20]

GN model



Conformal Maps
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Conformal
map

μ2 ζ

Solution: Do Padé after a conformal map
• Captures the singular behavior, no unphysical poles along real axis
• Significantly better approximation than Padé

Do Padé
 here

Pχ(T, ϕ(ζ)) =
p̃0(T ) + p̃1(T )ζ + … + p̃N/2(T )ζN

q̃0(T ) + q̃1(T )ζ + … + q̃N/2(T )ζN
ζ=ϕ−1(μ2)

“conformal Padé” 

ϕ(ζ) = ( θ
π )

θ/π

(1 −
θ
π )

1−θ/π 4μ2
LYζ

(1 + ζ)2 ( 1 + ζ
1 − ζ )

2θ/π



Conformal Maps
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•conformal Padé does not introduce 
unphysical poles on the real axis!

• captures  the e.o.s. beyond the 
radius of convergence-5

0
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Lee-Yang trajectory

 10

μLY(T ) ≈ +

•Find               from poles of the conformal-Padé (GN model)μ2
LY(T )

wLY =
2

3 3

fit fit

•Extract            crossover slope,      ,  and   μc, Tc,
hT

hμ

r3/2
μ
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−

hT

hμ )
3/2
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Ising parameters
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wLY =
2

3 3

μLY(T ) ≈ + iwLY
r3/2
μ

hμ ( rT

rμ
−

hT

hμ )
3/2

(T − Tc)3/2μc −
hT

hμ
(T − Tc)

exact 0.192 0.717 0.249 4.684

conf. Padé (N=21) 0.195 0.716 0.248 4.323

conf. Padé (N=11) 0.185 0.707 0.225 3.666

cμc hT /hμTc



Uniformization Map 
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Ising model: w = F(z)w = hr−βδ
F(z) = z + z3 (mean field)

w w

high T sheet
r>0

low T sheet
r<0, h>0

z = Mr−β

 M ~ Im z 

h ~ -Im w

 M ~ Re z 

h ~ Re w

z(w) = w − w3 + 3w5 − 12w7 + …
high T expansion

High Temperature (T>Tc) Low Temperature (T<Tc)



Uniformization: crossing the branch cut
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w → w(τ) = i(−1 + 2λ(τ))

w plane

τ(ζ) = i ( 1 + iζ
1 − iζ )

high T sheet
r>0

λ(τ) =
θ4

2(τ)
θ4

3(τ)
(elliptic modular function) θ2(τ) =

∞

∑
n=1

e2πiτ(n+1/2)2, θ3(τ) =
∞

∑
n=1

e2πiτn2

ζ



Uniformization: crossing the branch cut
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w plane

low T sheet
r<0

ζ

Low T sheet = Schwartz reflection of the high T sheet 
(modular transformation)



Uniformization: crossing the branch cut
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w plane

high T sheet

w plane

low T sheet

(h>0)

Moving within unit circle
(smooth) Jumping through sheets



Uniformization: crossing the branch cut
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Uniformizing (20 terms)

z1(exact)
z2 (exact)
z3(exact)

-20 -10 0 10 20
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Low T

Reconstructed from 
the high T expansion! 



Preliminary Results for QCD
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Taylor coefficients from Hot QCD collaboration up to 
[Bollweg et al. 2202.09184]

μ8
B
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FIG. 1. The nth order cumulants, �̄B,n
0 , contributing to the Taylor series of the pressure of (2+1)-flavor QCD as function

of µ̂B = µB/T versus temperature. Shown are the expansion coe�cients for the cases of (i) µQ = µS = 0 (left column)
and (ii) µQ = 0, nS = 0 (right column), respectively. In both cases the actual nth order expansion coe�cients in the Taylor
series are obtained with these cumulants as �̄B,n

0 /n!. Yellow bands show the location of the pseudo-critical temperature
Tpc(0) = 156.5(1.5) MeV [31].

datasets. For the higher order expansion coe�cients we
only use results from our high statistics calculations on
lattices with temporal extent N⌧ = 8, where more than
1.5 million gauge field configurations2 have been gener-
ated at each temperature value. Results for larger N⌧

2
These datasets have been generated using a Rational Hybrid

Monte Carlo Algorithm (RHMC) [38, 39]. They contain gauge

field configurations that have been stored after 10 subsequent

are consistent with these results but have significantly
larger statistical errors. However, as can be seen from
the lower order expansion coe�cients, cut-o↵ e↵ects are
generally small for expansion coe�cients at non-zero val-
ues of µ̂B . The interpolating curves for the O(µ6

B) and

RHMC time units. The actual code package used for our calcu-

lations is described in [40].
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LY Trajectory for QCD
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fits:
ReμLY(T ) = a(T − TC)2 + b(T − TC) + c

ImμLY(T ) = cwc(T − TC)βδ

βδ ≈ 1.5631 (3d Ising)

[Simmons-Duffin, 1502.02033]
from conformal bootstrap

μLY(T ) ≈ + iwc
rβδ
μ

hμ ( rT

rμ
−

hT

hμ )
βδ

(T − Tc)βδμc −
hT

hμ
(T − Tc)

wc = |zc |−βδ ≈ 0.246

[Connelly et al, 2006.12541]
from functional RG

uniformizing map

2-cut map

1-cut map

Padé

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
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Re μ/T

Im
μ/
T

consistent with the HotQCD results [Bollweg et al. 2202.09184]



Estimations for QCD critical point 
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consistent with the Bielefeld-Parma results

[Lattice ’23 talk by D. Clarke]

μC
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TC
TC ∼ 90 MeV μC ∼ 600 MeV
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2-cut 
conf. Padé

TC = 105 MeV μC = 528 MeV
α1 = 6.24∘ c = 2.92

1-cut 
conf.  Padé

TC = 105 MeV μC = 519 MeV
α1 = 6.43∘ c = 2.85

Padé
TC = 108 MeV μC = 495 MeV
α1 = 3.32∘ c = 3.30

unif. Padé
TC = 103 MeV μC = 546 MeV
α1 = 8.15∘ c = 2.70



Conclusions and Outlook
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•Combined with conformal maps, Padé approximants provide a 
powerful tool to extract information from truncated Taylor series.

•In the crossover region by using this tool it is possible to pin down 
the location of the Lee-Yang edge singularity and also extract 
information on the mapping parameters to critical Ising e.o.s.

• Conformal Padé gives a significantly better approximation to the 
e.o.s than than the Taylor series.

• Illustration in Gross-Neveu model, preliminary results for QCD.
•Better error analysis 
•Extrapolation from imaginary 𝜇, pairing with other resummation 

schemes [e.g. Borsanyi et al (2102.06660), Mukherjee et al (2110.02241, 2106.03165),  Bielefeld-
Parma, ’21 (2110.15933), …]

•Singularity elimination
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EXTRAS



When life gives you Taylor series…
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[GB, Dunne, Yin, arXiv: 2112.14269 ]



When life gives you Taylor series…
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e.g. f(z) =
1
2 ( 1

z − zc
+

1
z − z*c )

exact

Taylor

Padé
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Spurious poles

Spurious poles are unavoidable in Padé when there are conjugate pair of singularities…



Iterative Algorithm  
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1.Estimate         from Padé
2. Plug this value into the conformal map
3. Extract         from conformal Padé
4.Plug the new value into the conformal map
5. Repeat.   

μ2
LY

μ2
LY

ϕ(ζ) = ( θ
π )

θ/π

(1 −
θ
π )

1−θ/π 4μ2
LYζ

(1 + ζ)2 ( 1 + ζ
1 − ζ )

2θ/π
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[GB, Dunne, Yin, arXiv: 2112.14269 ]
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Uniformization
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w(τ) = i(−1 + 2λ(τ))

λ(τ) =
θ4

2(τ)
θ4

3(τ)
θ2(τ) =

∞

∑
n=−∞

e2πiτ(n+1/2)2, θ3(τ) =
∞

∑
n=−∞

e2πiτn2

w = F(z) = z + z3 (mean field)

z1(w) = −
2i

3 [ 2F1 ( 1
3

, −
1
3

,
1
2

;
1
2

(1 − iw)) − c.c.]
z2(w) =

2i

3
2F1 ( 1

3
, −

1
3

,
1
2

;
1
2

(1 − iw))
“uniformization”

[Bateman, Higher Transcendal Functions I]
* w → 2/(3 3)w

z(τ) : single valued



Uniformization
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Interactive realization:

Smooth in 
      planeτ

Jumping sheets 
in w plane

https://people.math.osu.edu/costin.9/classes.html


Uniformization: higher Riemann sheets
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