Adiabatic Hydrodynamization

A Natural Framework to Find and Describe Prehydrodynamic Attractors

Rachel Steinhorst

with Bruno Scheihing-Hitschfeld and Krishna Rajagopal

Hydrodynamization in Heavy Ion Collisions

Hydrodynamization in Heavy Ion Collisions

- How can we describe early out-of-equilibrium pre-hydro stage?
 - QCD Kinetic Theory
 - Holography
 - o Glasma
- Many descriptions have been shown to have "attractor" solutions
 - o See e.g. Kurkela, van der Schee, Wiedemann, Wu, arXiv:1907.08101
- Adiabatic Hydrodynamization framework: understand attractors in kinetic theory as the time-dependent ground state of an evolving effective Hamiltonian, long before hydrodynamization
 - o Brewer, Yan, Yin, arXiv:1910.00021
 - o Brewer, Scheihing-Hitschfeld, Yin, arXiv:2203.02427

$$\frac{\partial f}{\partial \tau} + \frac{p_{\perp}}{p} \nabla_{x_{\perp}} f + \frac{p_{\eta}}{\tau p} \frac{\partial f}{\partial \eta} + \frac{p_{\eta}}{\tau} \frac{\partial f}{\partial p_{\eta}} = \frac{g_s^4 N_c^2}{4\pi} l_{Cb}[f] \left(q \nabla_p^2 f + \lambda \nabla_p \cdot (\hat{p} f (1+f)) \right)$$
collision kernel assuming small-angle scattering

where
$$q = \int_p f(1+f)$$
 and $\lambda = \int_p \frac{2f}{p}$

- Goal: dynamically rescale f and p to write theory as $H_{\rm eff}$ $w=-\partial_{\tau}w$ in such a way that $H_{\rm eff}$ is gapped and w decays to a ground state "attractor"
- System well described by adiabatic approximation if

$$\delta_A \equiv \left|rac{<\phi_n|\partial_ au|\phi_0>}{\epsilon_n-\epsilon_0}
ight| \ll 1$$

$$\frac{\partial f}{\partial \tau} + \underbrace{\frac{p_{\perp}}{p} \nabla_{x_{\perp}} f}_{\text{neglect transverse expansion}} + \underbrace{\frac{p_{\eta}}{\tau} \frac{\partial f}{\partial \eta}}_{\text{assume boost invariance}} + \underbrace{\frac{p_{\eta}}{\tau} \frac{\partial f}{\partial p_{\eta}}}_{\text{assume boost invariance}} = \underbrace{\frac{g_s^4 N_c^2}{4\pi} l_{Cb}[f] \left(q \nabla_p^2 f + \lambda \nabla_p \cdot \left(\hat{p} f (1+f)\right)\right)}_{\text{collision kernel assuming small-angle scattering}}$$

where
$$q = \int_p f(1+f)$$
 and $\lambda = \int_p \frac{2f}{p}$

- Goal: dynamically rescale f and p to write theory as $H_{\rm eff}$ $w=-\partial_{\tau}w$ in such a way that $H_{\rm eff}$ is gapped and w decays to a ground state "attractor"
- System well described by adiabatic approximation if

$$\delta_A \equiv \left|rac{<\phi_n|\partial_ au|\phi_0>}{\epsilon_n-\epsilon_0}
ight| \ll 1$$

$$\frac{\partial f}{\partial \tau} + \frac{p_{\eta}}{\tau} \frac{\partial f}{\partial p_{\eta}} = \frac{g_s^4 N_c^2}{4\pi} l_{Cb}[f] \left(q \nabla_p^2 f + \lambda \nabla_p \cdot (\hat{p} f (1+f)) \right)$$

- Previous work: longitudinally expanding, overoccupied approximation (early times) [Brewer, Scheihing-Hitschfeld, Yin, arXiv:2203.02427]
 - \circ Found analytic expression eigenstates; scaling such that $\left.\partial_{ au}|\phi_{0}\right.>=0$
- One step forward, one step back: keep full small-angle collision kernel, but neglect longitudinal term and take $f \ll 1$.
- Suppose: $f(p,\tau) = A(\tau)w(p/D(\tau),\tau) = A(\tau)w(\chi,\tau)$. Then

$$H_{\text{eff}}w = -\partial_{\tau}w = \frac{\dot{A}}{A}w - \frac{\dot{D}}{D}\chi\partial_{\chi}w - \frac{q}{\chi^{2}D^{2}}(2\chi\partial_{\chi}w + \chi^{2}\partial_{\chi}^{2}w) - \frac{\lambda}{\chi^{2}D}(2\chi w + \chi^{2}\partial_{\chi}w)$$

$$\frac{\partial f}{\partial \tau} + \frac{p_{\eta}}{\tau} \frac{\partial f}{\partial p_{\eta}} = \frac{g_s^4 N_c^2}{4\pi} l_{Cb}[f] \left(q \nabla_p^2 f + \lambda \nabla_p \cdot (\hat{p} f (1+f)) \right)$$
previous work: simplified collision kernel

- Previous work: longitudinally expanding, overoccupied approximation (early times) [Brewer, Scheihing-Hitschfeld, Yin, arXiv:2203.02427]
 - \circ Found analytic expression eigenstates; scaling such that $\partial_{\tau}|\phi_0>=0$
- One step forward, one step back: keep full small-angle collision kernel, but neglect longitudinal term and take $f \ll 1$.
- Suppose: $f(p,\tau) = A(\tau)w(p/D(\tau),\tau) = A(\tau)w(\chi,\tau)$. Then

$$H_{\text{eff}}w = -\partial_{\tau}w = \frac{\dot{A}}{A}w - \frac{\dot{D}}{D}\chi\partial_{\chi}w - \frac{q}{\chi^{2}D^{2}}(2\chi\partial_{\chi}w + \chi^{2}\partial_{\chi}^{2}w) - \frac{\lambda}{\chi^{2}D}(2\chi w + \chi^{2}\partial_{\chi}w)$$

$$\frac{\partial f}{\partial \tau} + \frac{p_a}{\tau} \frac{\partial f}{\partial p_q} = \frac{g_s^4 N_c^2}{4\pi} l_{Cb}[f] \left(q \nabla_p^2 f + \lambda \nabla_p \cdot (\hat{p} f (1+f)) \right)$$

longitudinal expansion

- Previous work: longitudinally expanding, overoccupied approximation (early times) [Brewer, Scheihing-Hitschfeld, Yin, arXiv:2203.02427]
 - \circ Found analytic expression eigenstates; scaling such that $\partial_{ au}|\phi_0>=0$
- One step forward, one step back: keep full small-angle collision kernel, but neglect longitudinal term and take $f \ll 1$.
- Suppose: $f(p,\tau) = A(\tau)w(p/D(\tau),\tau) = A(\tau)w(\chi,\tau)$. Then

$$H_{\text{eff}}w = -\partial_{\tau}w = \frac{\dot{A}}{A}w - \frac{\dot{D}}{D}\chi\partial_{\chi}w - \frac{q}{\chi^{2}D^{2}}(2\chi\partial_{\chi}w + \chi^{2}\partial_{\chi}^{2}w) - \frac{\lambda}{\chi^{2}D}(2\chi w + \chi^{2}\partial_{\chi}w)$$

Optimizing Adiabaticity

$$H_{\text{eff}} = \frac{\dot{A}}{A} - \frac{\dot{D}}{D}\chi\partial_{\chi} - \frac{q}{\chi^{2}D^{2}}(2\chi\partial_{\chi} + \chi^{2}\partial_{\chi}^{2}) - \frac{\lambda}{\chi^{2}D}(2\chi + \chi^{2}\partial_{\chi})$$

• Express H_{eff} in terms of convenient basis:

$$\psi_L^{(n)} = p_n(\chi), \;\; \psi_R^{(n)} = p_n(\chi) e^{-\chi}$$

Note: p_n are generalized Laguerre polynomials with α =2

- To find an adiabatic rescaling, write down δ_A and at each time step minimize over \ddot{D}
- Given $f(p, t = 0) = \sum_n b_n(t = 0)\psi_R^{(n)}$, simultaneously solve for D(t) and $w_n(t)$

Optimizing Adiabaticity

As expected, we have a picture in which slow modes dominate before the system has fully thermalized. The excited states decay sequentially, and the evolution is extremely close to being exactly adiabatic.

Return to Original Kinetic Theory

$$\frac{\partial f}{\partial \tau} + \frac{p_z}{\tau} \frac{\partial f}{\partial p_z} = \frac{g_s^4 N_c^2}{4\pi} l_{Cb}[f] \left(q \nabla_p^2 f + \lambda \nabla_p \cdot (\hat{p} f (1+f)) \right)$$

- Bring back longitudinal expansion and quadratic terms in *f*.
- Suppose

$$f(p,\tau) = A(\tau)w(p_{\perp}/B(\tau), p_z/C(\tau), \tau) = A(\tau)w(\zeta, \xi, \tau)$$
.

Then
$$H_{\text{eff}} = \frac{\dot{A}}{A} - \frac{\dot{B}}{B}\zeta\partial_{\zeta} + (\frac{\dot{C}}{C} + 1)\xi\partial_{\xi} - q\tau \left[\frac{1}{B^2} \left(\frac{1}{\zeta}\partial_{\zeta} + \partial_{\zeta}^2 \right) + \frac{1}{C^2}\partial_{\xi}^2 \right] - \frac{\lambda\tau}{p} \left(2(1+Aw) + (1+2Aw)\zeta\partial_{\zeta} + (1+2Aw)\xi\partial_{\xi} \right)$$

Optimizing Adiabaticity

$$H_{\mathrm{eff}} = \frac{\dot{A}}{A} - \frac{\dot{B}}{B}\zeta\partial_{\zeta} + (\frac{\dot{C}}{C} + 1)\xi\partial_{\xi} - q\tau \left[\frac{1}{B^{2}} \left(\frac{1}{\zeta}\partial_{\zeta} + \partial_{\zeta}^{2} \right) + \frac{1}{C^{2}}\partial_{\xi}^{2} \right] \\ - \frac{\lambda\tau}{B\zeta} \underbrace{\left(2(1 + Aw) + (1 + 2Aw)\zeta\partial_{\zeta} + (1 + 2Aw)\xi\partial_{\xi} \right)}_{\text{Note: using approximation } p \approx p_{\perp} = B\zeta \text{ for convenience}}$$

• Express $H_{\rm eff}$ in terms of convenient basis:

$$\psi_{nm}^{(R)} = p_n(\zeta)q_m(\xi)e^{-(\xi^2/2+\zeta)}, \;\; \psi_n^{(L)} = p_n(\zeta)q_m(\xi)$$

- To find an adiabatic rescaling, write down δ_A and at each time step minimize over \ddot{B} and \ddot{C}
- Given $f(p, \tau_0) = \sum_{nm} w_{nm}(\tau_0) \psi_R^{(n,m)}$, simultaneously solve for B, C, and w_n dynamically

Comparison with Previous Results (Part 1)

where
$$\alpha = \frac{\tau}{A} \partial_{\tau} A$$
, $\beta = -\frac{\tau}{B} \partial_{\tau} B$, $\gamma = -\frac{\tau}{C} \partial_{\tau} C$

Dominance of Low-Energy Modes

Evolution is not strictly adiabatic, but low energy modes in the "most adiabatic" frame still quickly dominate

Dominance of Low-Energy Modes

Evolution is not strictly adiabatic, but low energy modes in the "most adiabatic" frame still quickly dominate

Dominance of Low-Energy Modes

- Not adiabatic because the ground state alone does not dominate, but there is clear separation between low-energy and high-energy modes
- 3 clusters in energy correspond to 3 longitudinal basis states

Comparison with Previous Results (Part 2)

Energy gap between each cluster matches earlier prediction:

$$\mathcal{E}_n = 2n(1-\gamma)$$

[Brewer, Scheihing-Hitschfeld, Yin, arXiv:2203.02427]

Summary

- We can find an adiabatic frame for a kinetic equation whose effective eigenstates are not known analytically
- We can reproduce behavior of scaling exponents by searching for exponents which maximize adiabaticity
- As in previous work, adiabatic approach explains how attractor behavior arises long before hydro
- By including transverse modes and not assuming $f\gg 1$, this work demonstrates the robustness of adiabatic hydrodynamization

Next Steps

- Extending this analysis to more general kinetic equations
 - Transverse expansion
 - o 1-to-2 scattering
- Using attractors as an ingredient in Bayesian analyses of heavy ion collision data (e.g. Trajectum)

Backup Slides

The Energy Gap as a Function of D

- The energy gap above the instantaneous ground state depends on the choice of the scaling variable *D*.
- The evolution of the system will traverse a 1D path on this parameter space
 - How adiabatic is the evolution on these paths?

Example path #1

Given some choice of initial distribution function, we can test difference possible choices for D(t). One choice: D constant

Example path #2

Another possible choice: $D(t)=q/\lambda(t)$

Adiabaticity for example paths

Optimizing Adiabaticity

Choosing D to maximize adiabaticity

