Temperature and Strong Magnetic Field Effects in Dense Matter

Accepted in Phys. Rev. D, e-Print: 2304.02454

Veronica Dexheimer

Jeffrey Peterson (Kent State University) Krishna Aryal (Kent State University) Pedro Costa (University of Coimbra) Constanca Providencia (University of Coimbra) MUSES collaboration

QCD Phase Diagram

What about Other Dimensions?

What about Other Dimensions?

Isospin and Strangeness

 Deconfinement to quark matter depends on strangeness fraction Y_s and isospin fraction Y_I (or charge fraction Y_Q)

Higher Order Phase Transitions in Neutron Stars

Alexander Clevinger Kent, Ohio, USA Quark Matter 2023

Talk by Alexander Clevinger in Astophysics

What about Other Dimensions?

Magnetic Fields

* Deconfinement also depends on magnetic field **B**

- * (Stronger) phase transition takes place at larger ϵ and μ_{B} for larger B in CMF model
- * (Weaker) phase transition takes place at lower μ_B for larger T

Magnetic Fields

 Neutron-star vs. heavy-ion collision matter also change dependence on B

 Neutron-star matter also shown for comparison in different colors

> B=1.44x10¹⁸ G for neutron-star matter B=1.44x10¹⁹ G for neutron-star matter

e-Print: 2304.02454

 Phase transition takes place at larger μ_B and is stronger for heavy-ion collision matter (for any **T** and **B**) in CMF model

Conclusions and Outlook

- Neutron-star matter allows access to strange and highly isospin-asymmetric matter at large densities
- Neutron-star mergers will very soon also inform us about dense and hot matter (while also strange and highly isospin asymmetric)

- * Magnetic fields are expected to be enhanced in mergers
- The multidimensional QCD phase diagram is slowly becoming constrained but requires a combined description
 MUSES cyberinfrastructure <u>https://muses.physics.illinois.edu/</u>

Conclusions and Outlook

- Neutron-star matter allows access to strange and highly isospin-asymmetric matter at large densities
- Neutron-star mergers will very soon also inform us about dense and hot matter (while also strange and highly isospin asymmetric)

- * Magnetic fields are expected to be enhanced in mergers
- ★ The multidimensional QCD phase dia becoming constrained but requires
 ▶ MUSES cyberinfrastructure <u>http</u>

Poster 116 Nikolás Cruz Camacho

ription <u>pis.edu/</u>

- * Modular Unified Solver of the Equation of state
- * Modular: while at low μ_B the EoS is known from 1st principles, at high μ_B there will be effective theories and different models for the user to choose
- * Unified: different modules will be merged together to ensure maximal coverage of the phase diagram
- Developers: physicists + computer scientists will work together to develop the software that generates EoS's over large ranges of temperature and chemical potentials to cover the whole phase diagram
- * Users: interested scientists from different communities, who provide input to the future open-source cyberinfrastructure

PI and co-PIs

- 1. Nicolas Yunes; University of Illinois at Urbana-Champaign; PI
- 2. Jacquelyn Noronha-Hostler; University of Illinois at Urbana-Champaign; co-PI
- 3. Jorge Noronha; University of Illinois at Urbana-Champaign; co-PI
- 4. Claudia Ratti; University of Houston; co-PI and **spokesperson**
- 5. Veronica Dexheimer; Kent State University; co-PI

Senior investigators

- 1. Matias Carrasco Kind; National Center for Supercomputing Applications
- 2. Roland Haas; National Center for Supercomputing Applications
- 3. Timothy Andrew Manning; National Center for Supercomputing Applications
- 4. Andrew Steiner; University of Tennessee, Knoxville
- 5. Jeremy Holt; Texas A&M University
- 6. Gordon Baym; University of Illinois at Urbana-Champaign
- 7. Mark Alford; Washington University in Saint Louis
- 8. Elias Most; Princeton University

Veronica Dexheimer Quark Matter 2023

External collaborators

- 1. Helvi Witek; University of Illinois at Urbana-Champaign
- 2. Stuart Shapiro; University of Illinois at Urbana-Champaign
- 3. Katerina Chatziioannou; California Institute of Technology
- 4. Phillip Landry; California State University Fullerton
- 5. Reed Essick; Perimeter Institute
- 6. Rene Bellwied; University of Houston
- 7. David Curtin; University of Toronto
- 8. Michael Strickland; Kent State University
- 9. Matthew Luzum; University of Sao Paulo
- 10. Hajime Togashi; Kyushu University
- 11. Toru Kojo; Central China Normal University
- 12. Hannah Elfner; GSI/Goethe University Frankfurt

