

A new causal and stable theory of viscous chiral hydrodynamics

Nick Abboud

in collaboration with Enrico Speranza and Jorge Noronha

arXiv:2308.02928

Quantum anomalous hydrodynamics

How does the chiral anomaly show up in the macroscopic behavior of a relativistic fluid?

Chiral hydrodynamics

e.g. Kharzeev, Liao, Voloshin, Wang, Prog. Part. Nucl. Phys. 88, 1-28 (2016)

- similar effects in \vec{B} -field
- transport coefficients largely determined by anomalies

$$U_{\rm int} \sim -\vec{s} \cdot \vec{\omega}$$

spins align with fluid vorticity

chiral transport effects

$$ec{J} \propto ec{\omega} \qquad ec{J}_5 \propto ec{\omega}$$

Chiral hydrodynamics

chiral + 2nd law of nomaly thermodynamics new hydro anomaly terms

equations of motion external

electromagnetic fields

$$\nabla_{\mu} T^{\mu\nu} = F^{\nu\lambda} J_{5\lambda}$$
$$\nabla_{\mu} J_5^{\mu} = C E^{\mu} B_{\mu}$$

degrees of freedom

$$\varepsilon, n_5, u^{\mu}$$
 $e_{n_e, s_{i,a}/ch_e}$
 $e_{o_{c,it}}$

In **Landau** hydrodynamic frame:

$$T^{\mu\nu} = \varepsilon u^{\mu}u^{\nu} + (P - \zeta\partial_{\alpha}u^{\alpha})\Delta^{\mu\nu} - 2\eta\sigma^{\mu\nu}$$

$$J_{5}^{\mu} = n_{5}u^{\mu} + \sigma \left[E^{\mu} - T\Delta^{\mu\nu}\partial_{\nu}\left(\frac{\mu_{5}}{T}\right)\right] + \frac{\xi_{J\omega}\omega^{\mu} + \xi_{JB}B^{\mu}}{\text{determined by a}}$$
 determined by a

demanded by thermodynamics! determined by anomaly!

$$\xi_{J\omega} = C\mu_5^2 + \tilde{C}T^2$$
$$\xi_{JB} = C\mu_5$$

Chiral hydrodynamics

equations of motion external

electromagnetic fields

$$\nabla_{\mu} T^{\mu\nu} = F^{\nu\lambda} J_{5\lambda}$$

$$\nabla_{\mu}J_5^{\mu} = CE^{\mu}B_{\mu}$$

degrees of freedom

$$\dot{\varepsilon}, n_5, u^{\mu}$$

In Eckart hydrodynamic frame:

$$T^{\mu\nu} = \varepsilon u^{\mu} u^{\nu} + (P - \zeta \partial_{\alpha} u^{\alpha}) \Delta^{\mu\nu} - 2 \eta \sigma^{\mu\nu} + u^{\mu} Q^{\nu} + u^{\nu} Q^{\mu}$$

$$J_5^{\mu} = n_5 u^{\mu}$$

$$\mathcal{Q}^{\mu} = -\sigma T \left[\frac{\Delta^{\mu\alpha}\partial_{\alpha}T}{T} + u^{\alpha}\partial_{\alpha}u^{\mu} \right] + \underbrace{\xi_{T\omega}\omega^{\mu} + \xi_{TB}B^{\mu}}_{\text{anomalous heat diffusion}}$$

vector + axial, other hydrodynamic frames, derivations from kinetic theory, Israel-Stewart-like theories, ...

Isachenkov & Sadofyev PLB 697, 404 (2011) Stephanov & Yee PRL 116, 122302 (2011) Chen, Son, Stephanov PRL 115, 021601 (2015) Yang, PRD 98, 076019 (2018) Gorbar, Rybalka, Shovkovy, PRD 95, 096010 (2017)

Can these theories be solved?

Local well-posedness

Unique solutions for arbitrary initial conditions

Is chiral hydro consistent™ with these principles?

Causality

Information propagates subluminally

Stability

Deviations from equilibrium are bounded

Previous theories of viscous chiral hydrodynamics

fail to be consistent

OR

their consistent regime is *not known*

In this talk...

the first consistent theory of viscous chiral hydrodynamics

NA, E. Speranza, J. Noronha, arXiv:2308.02928

BDNK approach to consistent 1st-order hydro

Bemfica, Disconzi, Noronha, PRD 98, 104064 (2018); PRD 100, 104020 (2019); PRX 12, 021044 (2022) Kovtun, JHEP 10, 034 (2019); Hoult & Kovtun, JHEP 06, 067 (2020)

degrees of freedom

 ε , n, u^{μ}

equations of motion

$$\nabla_{\mu}T^{\mu\nu} = 0$$

$$\nabla_{\mu}J^{\mu}=0$$

(vector current)

$$T^{\mu\nu} = (\varepsilon + \mathcal{A})u^{\mu}u^{\nu} + (P + \Pi)\Delta^{\mu\nu} + \mathcal{Q}^{\mu}u^{\nu} + \mathcal{Q}^{\nu}u^{\mu} + \mathcal{T}^{\mu\nu}$$

 $J^{\mu} = nu^{\mu}$

Bemfica, Disconzi & Noronha, PRX 12, 021044 (2022)

$$\mathcal{A} = \tau_{\varepsilon} \left[u^{\lambda} \nabla_{\lambda} \varepsilon + (\varepsilon + P) \nabla_{\lambda} u^{\lambda} \right], \quad \mathcal{T}^{\mu\nu} = -2 \eta \sigma^{\mu\nu}$$

$$\Pi = -\zeta \nabla_{\lambda} u^{\lambda} + \tau_{P} \left[u^{\lambda} \nabla_{\lambda} \varepsilon + (\varepsilon + P) \nabla_{\lambda} u^{\lambda} \right]$$

$$\mathcal{Q}^{\nu} = \tau_{Q}(\varepsilon + P) u^{\lambda} \nabla_{\lambda} u^{\nu} + \beta_{\varepsilon} \Delta^{\nu\lambda} \nabla_{\lambda} \varepsilon + \beta_{n} \Delta^{\nu\lambda} \nabla_{\lambda} n$$

has all leading dissipative contributions: shear/bulk viscosity & thermal conductivity

- extra transport parameters regulate inconsistent behavior
- proved locally wellposed, causal, and stable (and strongly hyperbolic)

Consistent 1st-order chiral hydro

degrees of freedom

equations of motion

NA, E. Speranza, J. Noronha arXiv:2308.02928

$$\varepsilon$$
, n_5 , u^{μ}

$$\nabla_{\mu}T^{\mu\nu} = F^{\nu\lambda}J_{5\lambda}$$

$$\nabla_{\mu}J_{5}^{\mu} = CE^{\mu}B_{\mu}$$

$$T^{\mu\nu} = (\varepsilon + \mathcal{A})u^{\mu}u^{\nu} + (P + \Pi)\Delta^{\mu\nu} + \mathcal{Q}^{\mu}u^{\nu} + \mathcal{Q}^{\nu}u^{\mu} + \mathcal{T}^{\mu\nu}$$
$$J_{5}^{\mu} = (n_{5} + \mathcal{N}_{5})u^{\mu} + \mathcal{J}_{5}^{\mu}$$

$$\mathcal{A} = \varepsilon_{1}D\varepsilon + \varepsilon_{2}\nabla_{\lambda}u^{\lambda} + \varepsilon_{3}Dn_{5}, \quad \mathcal{T}^{\mu\nu} = -2\eta\sigma^{\mu\nu}$$

$$\Pi = \pi_{1}D\varepsilon + \pi_{2}\nabla_{\lambda}u^{\lambda} + \pi_{3}Dn_{5}$$

$$\mathcal{Q}^{\nu} = \theta_{1}\nabla_{\perp}^{\mu}\varepsilon + \theta_{2}Du^{\mu} + \theta_{3}\nabla_{\perp}^{\mu}n_{5} + \theta_{E}E^{\mu} + \xi_{T\omega}\omega^{\mu} + \xi_{TB}B^{\mu}$$

$$\mathcal{N}_{5} = \nu_{1}D\varepsilon + \nu_{2}\nabla_{\lambda}u^{\lambda} + \nu_{3}Dn_{5}$$

$$\mathcal{J}_{5}^{\mu} = \gamma_{1}\nabla_{\perp}^{\mu}\varepsilon + \gamma_{2}Du^{\mu} + \gamma_{3}\nabla_{\perp}^{\mu}n_{5} + \gamma_{E}E^{\mu} + \xi_{J\omega}\omega^{\mu} + \xi_{JB}B^{\mu}$$

all possible first-order transport parameters are included

all chiral conductivities

Houston, we have a problem! NA, E. Speranza, J. Noronha arXiv:2308.02928

$$T^{\mu\nu} = (\varepsilon + \mathcal{A})u^{\mu}u^{\nu} + (P + \Pi)\Delta^{\mu\nu} + \mathcal{Q}^{\mu}u^{\nu} + \mathcal{Q}^{\nu}u^{\mu} + \mathcal{T}^{\mu\nu}$$

$$J_{5}^{\mu} = (n_{5} + \mathcal{N}_{5})u^{\mu} + \mathcal{J}_{5}^{\mu}$$

$$\mathcal{A} = \varepsilon_{1}D\varepsilon + \varepsilon_{2}\nabla_{\lambda}u^{\lambda} + \varepsilon_{3}Dn_{5}, \quad \mathcal{T}^{\mu\nu}$$

$$\Pi = \pi_{1}D\varepsilon + \pi_{2}\nabla_{\lambda}u^{\lambda} + \pi_{3}Dn_{5}$$

$$\mathcal{Q}^{\nu} = \theta_{1}\nabla_{\perp}^{\mu}\varepsilon + \theta_{2}Du^{\mu} + \theta_{3}\nabla_{\perp}^{\mu}n_{5} + \theta_{E}E^{\mu} + \xi_{T\omega}\omega^{\mu} + \xi_{TB}B^{\mu}$$

$$\mathcal{N}_{5} = \nu_{1}D\varepsilon + \nu_{2}\nabla_{\lambda}u^{\lambda} + \nu_{3}Dn_{5}$$

$$\mathcal{J}_{5}^{\mu} = \gamma_{1}\nabla_{\perp}^{\mu}\varepsilon + \gamma_{2}Du^{\mu} + \gamma_{3}\nabla_{\perp}^{\mu}n_{5} + \gamma_{E}E^{\mu} + \xi_{J\omega}\omega^{\mu} + \xi_{JB}B^{\mu}$$

This term makes the theory acausal, unstable, and even ill-posed!

Why is the bad term bad?

We thank Lorenzo Gavassino for pointing out this argument

Strip away everything but the bad term

heat diffusion

$$T^{\mu\nu} = (\varepsilon + P)u^{\mu}u^{\nu} + Pg^{\mu\nu} + Q^{\mu}u^{\nu} + Q^{\nu}u^{\mu}$$

Velocity perturbation atop static equilibrium:

$$u^{\mu} = (1, \vec{\delta u}) \implies \delta T^{0j} = (\varepsilon + P)\delta u^j + \delta Q^j \not\propto \delta u^j$$

unbounded acceleration by pushing heat in other direction

this can be any function

$$\delta \mathcal{Q}^j \sim \frac{1}{2} \xi_{T\omega} (\vec{\nabla} \times \vec{\delta u})^j \implies \vec{\delta u} = f(t) \sin(kz), \cos(kz), 0$$

(bad term)

$$\vec{\delta u} = f(t) \sin(kz), \cos(kz), 0$$

can increase without bound!

$$k = \frac{2(\varepsilon + P)}{\xi_{T\omega}}$$

Why is the bad term bad?

We thank Lorenzo Gavassino for pointing out this argument

Strip away everything k

$$T^{\mu\nu} = (\varepsilon + P)$$

Velocity perturbation a

$$u^{\mu} = (1, \vec{\delta u})$$

unbounded acc pushing heat in o

unstable and ill-posed

(non-deterministic)

diffusion $Q^{\nu}u^{\mu}$

$$u^j + \delta \mathcal{Q}^j \not\propto \delta u^j$$

 $k = \frac{2(\varepsilon + P)}{\xi_{T_{\varepsilon}}}$

this can be any function

$$\vec{\delta u} = f(t) \sin(kz), \cos(kz), 0$$

can increase without bound!

 $\delta \mathcal{Q}^j \sim \frac{1}{2} \xi_{T\omega} (\vec{\nabla} \times \vec{\delta u})^j \implies \vec{\delta u} = f(t) \sin(kz), \cos(kz), 0$ (bad term)

First-order viscous chiral hydro is ill-posed *unless*

$$\xi_{T\omega} = 0$$

no vorticity-induced heat flux!

the same happens in **ideal** chiral hydro

Speranza, Bemfica, Disconzi, Noronha, PRD 107, 054029 (2023)

Fixing the bad term

NA, E. Speranza, J. Noronha arXiv:2308.02928

$$T^{\mu\nu} = (\varepsilon + \mathcal{A})u^{\mu}u^{\nu} + (P + \Pi)\Delta^{\mu\nu} + \mathcal{Q}^{\mu}u^{\nu} + \mathcal{Q}^{\nu}u^{\mu} + \mathcal{T}^{\mu\nu}$$
$$J_{5}^{\mu} = (n_{5} + \mathcal{N}_{5})u^{\mu} + \mathcal{J}_{5}^{\mu}$$

. . .

$$Q^{\nu} = \theta_1 \nabla^{\mu}_{\perp} \varepsilon + \theta_2 D u^{\mu} + \theta_3 \nabla^{\mu}_{\perp} n_5 + \theta_E E^{\mu} + \xi_{T\omega} \omega^{\mu} + \xi_{TB} B^{\mu}$$

hydrodynamic frame

=

definition of hydrodynamic fields

$$\varepsilon$$
, n_5 , u^{α}

frame transformation

$$u^{\mu} \to u^{\mu} - \frac{\xi_{T\omega}}{\varepsilon + P} \omega^{\mu}$$

Fixing the bad term

NA, E. Speranza, J. Noronha arXiv:2308.02928

$$T^{\mu\nu} = (\varepsilon + \mathcal{A})u^{\mu}u^{\nu} + (P + \Pi)\Delta^{\mu\nu} + \mathcal{Q}^{\mu}u^{\nu} + \mathcal{Q}^{\nu}u^{\mu} + \mathcal{T}^{\mu\nu}$$
$$J_{5}^{\mu} = (n_{5} + \mathcal{N}_{5})u^{\mu} + \mathcal{J}_{5}^{\mu}$$

• •

$$Q^{\nu} = \theta_1 \nabla^{\mu}_{\perp} \varepsilon + \theta_2 D u^{\mu} + \theta_3 \nabla^{\mu}_{\perp} n_5 + \theta_E E^{\mu} + \left(\begin{array}{c} \widehat{\psi} \\ \widehat{\psi} \end{array} \right) + \xi_{TB} B^{\mu}$$

hydrodynamic frame

=

definition of hydrodynamic fields

$$\varepsilon$$
, n_5 , u^{α}

frame transformation

$$u^{\mu} \to u^{\mu} - \frac{\xi_{T\omega}}{\varepsilon + P} \omega^{\mu}$$

requires departure from the "thermodynamic frame" of Jensen et al., PRL 109, 101601 (2012)

When is 1st-order chiral hydro consistent?

inequalities among transport coefficients

Nonlinear causality e.g. Courant and Hilbert, Methods of Mathematical Physics (1989) Choquet-Bruhat, General Relativity and the Einstein Equations (2009)

Causality conditions

Causal if, and only if, $0 \le \eta/\theta_2 \le 1$ and

- ullet The λ_i are combinations of the transport parameters
- Causality only depends on three combinations!
- These conditions imply local well-posedness in a restricted class of function spaces (Gevrey)

Lorentz-covariant linear stability

stability of all homogeneous equilibria

Fourier decomposition

$$\delta \varepsilon, \delta n_5, \delta u^{\alpha} \sim e^{i(-\Omega t + \vec{k} \cdot \vec{x})}$$

Causality is **necessary** for covariant stability!

Gavassino, PRX 12, 041001 (2022) Bemfica, Disconzi & Noronha, PRX 12, 021044 (2022)

Stability conditions

NA, E. Speranza, J. Noronha, arXiv:2308.02928

$$\theta_2 > 0$$
 and $\eta \ge 0$,
 $\overline{\lambda}_0 > 0$ and $\overline{A} \ge 0$ and $\overline{F} \ge 0$ and $\overline{\lambda}_3 \ge 0$,

$$S_2 = \{(a, b, c) \in \mathbb{R}^3 | a \ge 0, c \ge 0, b \ge -2\sqrt{ac}\}.$$

$$S_3$$
:
 $\begin{array}{c} \bullet & a \geq 0 \quad \text{and} \quad b \geq 0 \quad \text{and} \quad c \geq 0 \quad \text{and} \quad d \geq 0, \\ \bullet & a > 0 \quad \text{and} \quad d > 0 \quad \text{and} \quad \operatorname{Disc}_3(a, b, c, d) \leq 0, \end{array}$

The neccessary & sufficient conditions are complex

- Can be straightforwardly checked numerically
- Simplifications available in limiting cases (see paper)

$$\begin{split} &+\overline{\lambda}_{0}[\overline{E}(\overline{A}\,\overline{D}-\overline{\lambda}_{0}c_{s}^{2}\\ \Delta_{(3,8)} &= (\overline{\lambda}_{3}\overline{A}-\overline{\lambda}_{1}\overline{E})\Delta_{(1,2)} +\\ \Delta_{(4,4)} &= -\overline{F}\Delta_{(1,0)} + c_{s}^{2}\Delta_{(3,2)},\\ \Delta_{(4,6)} &= [\overline{F}(\overline{A}c_{s}^{2}-\overline{C})-\overline{\lambda}_{3}]\Delta_{(1,0)} - \overline{F}\Delta_{(2,2)} + \overline{E}\Delta_{(3,2)} + c_{s}^{2}\Delta_{(3,4)},\\ \Delta_{(4,8)} &= [\overline{\lambda}_{3}(\overline{A}c_{s}^{2}-\overline{C}) + \overline{A}\,\overline{E}\,\overline{F}]\Delta_{(1,0)} + \overline{A}\,\overline{F}c_{s}^{2}\Delta_{(1,2)} - (\overline{\lambda}_{3}+\overline{C}\,\overline{F})\Delta_{(2,2)} - \overline{F}\Delta_{(2,4)},\\ &+ \overline{E}\Delta_{(3,4)} + c_{s}^{2}\Delta_{(3,6)} - \overline{A}^{3}\overline{F}^{2},\\ \Delta_{(4,10)} &= \overline{\lambda}_{3}\overline{A}\,\overline{E}\Delta_{(1,0)} + \overline{A}(\overline{E}\,\overline{F} + \overline{\lambda}_{3}c_{s}^{2})\Delta_{(1,2)} - \overline{\lambda}_{3}\overline{C}\Delta_{(2,2)} - (\overline{\lambda}_{3}+\overline{C}\,\overline{F})\Delta_{(2,4)}\\ &+ \overline{E}\Delta_{(3,6)} + c_{s}^{2}\Delta_{(3,8)} - 2\overline{\lambda}_{3}\overline{A}^{3}\overline{F},\\ \Delta_{(4,12)} &= \overline{\lambda}_{3}\overline{A}\,\overline{E}\Delta_{(1,2)} - \overline{\lambda}_{3}\overline{C}\Delta_{(2,4)} + \overline{E}\Delta_{(3,8)} - \overline{\lambda}_{3}^{2}\overline{A}^{3}. \end{split}$$

 $\Delta_{(1,0)} \ge 0$ a

 $(\Delta_{(2,4)}, \Delta_{(2,2)})$

 $(\Delta_{(3,8)}, \Delta_{(3,6)})$

 $(\Delta_{(4,12)}, \Delta_{(4,1)})$

$$\begin{split} &\Delta_{(2,2)} = \overline{C}\Delta_{(1,0)} + \Delta_{(1,2)} - \overline{A}\\ &\Delta_{(2,4)} = \overline{C}\Delta_{(1,2)} - \overline{A}(\overline{\lambda}_2 \overline{A} - \overline{\lambda}_2 \overline{A})\\ &\Delta_{(3,2)} = (\overline{D} - \overline{B}c_s^2)\Delta_{(1,0)},\\ &\Delta_{(3,4)} = (\overline{A}\,\overline{F} - \overline{B}\,\overline{E} - c_s^2\overline{\lambda}_1 + \overline{\lambda}_2 \overline{A}) \end{split}$$

 $\Delta_{(3,6)} = (\overline{\lambda}_3 \overline{A} - \overline{\lambda}_1 \overline{E}) \Delta_{(1,0)} +$

$$\begin{split} &\Delta_{(1,0)} = \overline{A}\,\overline{B} - \overline{\lambda}_0, \\ &\Delta_{(1,2)} = \overline{\lambda}_1 \overline{A} - \overline{\lambda}_0 \overline{C}, \\ &\Delta_{(2,0)} = \Delta_{(1,0)}, \end{split}$$

$$\begin{split} C &= \left(\frac{4}{3}\eta - \pi_2\right) (\tilde{\varepsilon}_1 + \tilde{\nu}_3) + (\varepsilon_2 + \theta_2) (\tilde{\pi}_1 + \tilde{\theta}_1 - \langle \tilde{\nu} \rangle) + (\nu_2 + \gamma_2) (\tilde{\pi}_3 + \tilde{\theta}_3 + \langle \tilde{\varepsilon} \rangle) \\ &+ w (\{\tilde{\pi}, \tilde{\nu}\} + \{\tilde{\gamma}, \tilde{\varepsilon}\}) + n \{\tilde{\varepsilon}, \tilde{\pi} + \tilde{\theta}\} - \theta_2 (\tilde{\theta}_1 + \tilde{\gamma}_3), \\ D &= \frac{4}{3}\eta - \pi_2 + w (\tilde{\pi}_1 - \tilde{\gamma}_3 - \langle \tilde{\nu} \rangle) + n (\tilde{\pi}_3 + \tilde{\theta}_3 + \langle \tilde{\varepsilon} \rangle) + \left(\frac{\partial P}{\partial \varepsilon}\right)_n (\varepsilon_2 + \theta_2) + \left(\frac{\partial P}{\partial n}\right)_{\varepsilon} (\nu_2 + \gamma_2), \\ E &= -\left(\frac{4}{3}\eta - \pi_2\right) (\tilde{\theta}_1 + \tilde{\gamma}_3) + w \{\tilde{\gamma}, \tilde{\pi}\} + n \{\tilde{\pi}, \tilde{\theta}\} + (\varepsilon_2 + \theta_2) \langle \tilde{\gamma} \rangle - (\nu_2 + \gamma_2) \langle \tilde{\theta} \rangle, \\ F &= w \langle \tilde{\gamma} \rangle - n \langle \tilde{\theta} \rangle. \end{split}$$

Conclusions & Outlook

- New comprehensive formulation of first-order chiral hydrodynamics
- First theory of viscous chiral hydrodynamics proven to be causal and stable
- Suitable for numerical simulation of chiral effects throughout the hydro evolution
- <u>Future work:</u> chirality in consistent second-order theories, rotating equilibria, ...