Determination of the neutron skin of ²⁰⁸Pb from ultrarelativistic nuclear collisions

Govert Nijs

September 6, 2023

Based on:

■ Giacalone, GN, van der Schee, 2305.00015

Introduction

- In a ²⁰⁸Pb nucleus, neutrons sit further from the center than protons.
 - This is quantified by the *neutron skin*:

$$\Delta r_{np} = \langle r^2 \rangle_n^{1/2} - \langle r^2 \rangle_p^{1/2},$$

i.e. the difference in RMS radii of the neutron and proton distributions.

- Heavy nuclei and neutron stars are sensitive to the same nuclear interactions.
 - \blacksquare A constraint on $\triangle r_{np}$ translates directly into a constraint on the radius of a $1.4M_{\odot}$ neutron star.
 - We can learn something about the low T. high μ_B region even at LHC energies!

How to measure neutron skin?

Introduction

- To measure the neutron skin, we need the distributions of protons and neutrons inside the nucleus.
 - The proton distribution distribution is well-known from electron scattering.
- Several different methods are in use for the neutron distribution:
 - Polarized electron scattering off ²⁰⁸Pb (PREX).
 - Photon tomography of ¹⁹⁷Au (STAR).
- Heavy ion collisions provide a completely orthogonal method.
 - Sensitive to the total matter distribution inside the nucleus.
 - Purely gluonic measurement.

Effects of nuclear structure on soft observables

- The STAR isobar run sparked great interest in nuclear structure in heavy ion collisions.
 - Originally intended to measure the chiral magnetic effect.
- Differences in the shapes of ⁹⁶₄₄Ru and ⁹⁶₄₀Zr lead to differences in soft observables.
 - We can distinguish several possibilities for the shapes of ⁹⁶/₄₄Ru and ⁹⁶/₄₀Zr, with model 5 giving the best agreement.
 - Isobar nature of ⁹⁶₄₄Ru and ⁹⁶₄₀Zr leads to robust ratios insensitive to details of hydrodynamics.

Effects of nuclear structure on soft observables

- The STAR isobar run sparked great interest in nuclear structure in heavy ion collisions.
 - Originally intended to measure the chiral magnetic effect.
- Differences in the shapes of ${}^{96}_{44}$ Ru and $^{96}_{40}\mathrm{Zr}$ lead to differences in soft observables.
 - We can distinguish several possibilities for the shapes of ⁹⁶₄₄Ru and $^{96}_{40}$ Zr, with model 5 giving the best agreement.
 - Isobar nature of ⁹⁶/₄₄Ru and ⁹⁶/₄₀Zr leads to robust ratios insensitive to details of hydrodynamics.

Effects of nuclear structure on soft observables

- The STAR isobar run sparked great interest in nuclear structure in heavy ion collisions.
 - Originally intended to measure the chiral magnetic effect.
- Differences in the shapes of ${}^{96}_{44}$ Ru and ${}^{96}_{40}$ Zr lead to differences in soft observables.
 - We can distinguish several possibilities for the shapes of ⁹⁶₄₄Ru and $^{96}_{40}$ Zr, with model 5 giving the best agreement.
 - Isobar nature of ⁹⁶/₄₄Ru and ⁹⁶/₄₀Zr leads to robust ratios insensitive to details of hydrodynamics.

- The isobar run was particularly sensitive to nuclear structure, because other effects approximately cancel in the ratio.
- PbPb collisions at LHC energies however are not paired with anything close in mass.
- Extraction of the ²⁰⁸Pb neutron skin from PbPb collisions alone will need to distinguish nuclear structure effects from the various model parameters.
 - Need Bayesian analysis to perform a systematic fit to take into account such correlations.

- In principle, Bayesian analysis is simply a fit to data.
- In practice the process is more complicated:
 - Generate a large number of randomly chosen parameter sets called design points.
 - Run the model for each one to obtain the prior.
 - Train the emulator
 - Run the MCMC to obtain the posterior.
- The posterior then is a list of likely parameter sets.

- In principle, Bayesian analysis is simply a fit to data.
- In practice the process is more complicated:
 - Generate a large number of randomly chosen parameter sets called design points.
 - Run the model for each one to obtain the prior.
 - Train the emulator.
 - Run the MCMC to obtain the posterior.
- The posterior then is a list of likely parameter sets.

- In principle, Bayesian analysis is simply a fit to data.
- In practice the process is more complicated:
 - Generate a large number of randomly chosen parameter sets called design points.
 - Run the model for each one to obtain the prior.
 - Train the emulator.
 - Run the MCMC to obtain the posterior.
- The posterior then is a list of likely parameter sets.

- In principle, Bayesian analysis is simply a fit to data.
- In practice the process is more complicated:
 - Generate a large number of randomly chosen parameter sets called design points.
 - Run the model for each one to obtain the prior.
 - Train the emulator.
 - Run the MCMC to obtain the posterior.
- The posterior then is a list of likely parameter sets.

Model used: Trajectum

- New heavy ion code developed in Utrecht/MIT/CERN.
 - Trajectum is the old Roman name for Utrecht
- Contains initial stage, hydrodynamics and freeze-out, as well as an analysis suite.
- Easy to use, example parameter files distributed alongside the source code.
- Fast, fully parallelized.
 - Figure (20k oversampled PbPb events at 2.76 TeV) computes on a laptop in 21h.
 - Bayesian analysis requires $\mathcal{O}(1000)$ similar calculations to this one.
- Publicly available at sites.google.com/ view/govertnijs/trajectum/.

Data used: 670 individual data points

√: data used									
🕒: data exists	PbPb 2.76 TeV			PbPb 5.02 TeV			<i>p</i> Pb 5.02 TeV		
X: data does not exist	incl.	π^{\pm}	K^{\pm}	р	incl.	π^{\pm}	K^{\pm}	р	incl.
σ	X	X	X	X	1	X	X	X	✓
dN/dy	1	1	✓	1	1	1	1	1	
$\langle p_T angle$	X	1	1	1	1	1	1	1	3
$dE_T/d\eta$	1	X	X	X	X	X	X	X	X
$\delta p_T/\langle p_T \rangle$	1	X	X	X	X	X	X	Х	X
$v_{2,3,4}\{2\}$	✓	(1)			1	X	X	X	
<i>v</i> ₂ {4}	1	X	X	X	1	X	X	X	
d^2N/dp_Tdy	X	1	✓	1	X	1	✓	1	X
$v_2\{2\}(p_T)$	X	1	✓	1	X	1	1	1	X
$v_3\{2\}(p_T)$	X	1			X	1			X
NSC(2,3)		X	X	X	1	X	X	X	X
NSC(2,4)		X	X	X	/	X	X	X	X
$\rho(v_2\{2\}^2,\langle p_T\rangle)$	X	X	X	Х	1	X	X	Х	X

Fitting to the pPb and PbPb cross sections

- In the TRENTo model, the nucleon size is described by the Gaussian radius w.
- Previous analyses favored $w \approx 1 \, \text{fm}$.
 - This leads to a 3σ discrepancy in σ_{PhPh} .
- Fitting to the *p*Pb and PbPb cross sections lowers *w* to 0.6 fm.
 - σ_{PbPb} discrepancy is reduced to 1σ .
 - Many other observables fit slightly worse.
- Smaller width is now compatible with our knowledge of the gluonic structure of the proton at low x.

	$\sigma_{PbPb}[b]$	$\sigma_{p{\sf Pb}}[{\sf b}]$
with σ_{AA}	$\textbf{8.02} \pm \textbf{0.19}$	2.20 ± 0.06
without σ_{AA}	8.95 ± 0.36	2.48 ± 0.10
ALICE/CMS	7.67 ± 0.24	2.06 ± 0.08

■ Nuclear thickness functions $\mathcal{T}_{A/B}$ deposit matter into the initial state energy density \mathcal{T} as follows:

$$\mathcal{T} \propto \left(rac{\mathcal{T}_A^p + \mathcal{T}_B^p}{2}
ight)^{q/p} \stackrel{p o 0}{=} (\mathcal{T}_A \mathcal{T}_B)^{q/2}.$$

- Previous analyses implicitly set q = 1.
- The fit to experimental data favors $q \approx 4/3$.
 - Previous default q = 1 is disfavored.
 - Binary scaling q = 2 is ruled out.
 - $\mathbf{q} = 4/3$ indicates that $\sqrt{\mathcal{T}_A \mathcal{T}_B}$ behaves like an entropy density.

The Woods-Saxon distribution

 Nucleon positions are drawn from a Woods-Saxon distribution:

$$ho_{\mathsf{WS}}(r) \propto rac{1}{1 + \exp\left(rac{r-R}{a}
ight)}.$$

- We fix *R* for both protons and neutrons.
- We fix a for protons, while varying a_n as a parameter.
- Neutron skin $\Delta r_{np} = \langle r^2 \rangle_n^{1/2} \langle r^2 \rangle_n^{1/2}$ strongly depends on a_n :

$$\langle r^2
angle_{\mathrm{WS}} = rac{12a^2 \operatorname{Li}_5\left(-e^{R/a}
ight)}{\operatorname{Li}_3\left(-e^{R/a}
ight)}.$$

Neutron skin 00000

	proton	neutron
R [fm]	6.68	6.69
<i>a</i> [fm]	0.447	a_n

Nucleon positions are drawn from a Woods-Saxon distribution:

$$ho_{\mathsf{WS}}(r) \propto rac{1}{1 + \exp\left(rac{r-R}{a}
ight)}.$$

- We fix *R* for both protons and neutrons.
- We fix a for protons, while varying a_n as a parameter.
- Neutron skin $\Delta r_{np} = \langle r^2 \rangle_n^{1/2} \langle r^2 \rangle_p^{1/2}$ strongly depends on a_n :

$$\langle r^2
angle_{\mathrm{WS}} = rac{12a^2 \operatorname{Li}_5\left(-e^{R/a}
ight)}{\operatorname{Li}_3\left(-e^{R/a}
ight)}.$$

	proton	neutron
R [fm]	6.68	6.69
<i>a</i> [fm]	0.447	a_n

- Initial geometry is sensitive to a_n . Larger nuclei lead to:
 - Larger hadronic PbPb cross-section.
 - Larger initial QGP size,
 - Smaller initial QGP eccentricity.
- Final state observables are in turn sensitive to initial geometry. Larger Δr_{np} leads to:
 - Larger hadronic PbPb cross-section.
 - Smaller charged particle yield,
 - Smaller mean transverse momentum.
 - Smaller elliptic flow.

- Initial geometry is sensitive to a_n . Larger nuclei lead to:
 - Larger hadronic PbPb cross-section.
 - Larger initial QGP size,
 - Smaller initial QGP eccentricity.
- Final state observables are in turn sensitive to initial geometry. Larger Δr_{nn} leads to:
 - Larger hadronic PbPb cross-section.
 - Smaller charged particle yield,
 - Smaller mean transverse momentum.
 - Smaller elliptic flow.

- Initial geometry is sensitive to a_n. Larger nuclei lead to:
 - Larger hadronic PbPb cross-section,
 - Larger initial QGP size,
 - Smaller initial QGP eccentricity.
- Final state observables are in turn sensitive to initial geometry. Larger Δr_{np} leads to:
 - Larger hadronic PbPb cross-section,
 - Smaller charged particle yield,
 - Smaller mean transverse momentum,
 - Smaller elliptic flow.

- Initial geometry is sensitive to a_n. Larger nuclei lead to:
 - Larger hadronic PbPb cross-section,
 - Larger initial QGP size,
 - Smaller initial QGP eccentricity.
- Final state observables are in turn sensitive to initial geometry. Larger Δr_{np} leads to:
 - Larger hadronic PbPb cross-section,
 - Smaller charged particle yield,
 - Smaller mean transverse momentum.
 - Smaller elliptic flow.

- a_n is not the only parameter affecting the initial geometry, leading to correlations. a_n :
 - anticorrelates with p.
 - mildly anticorrelates with both w and q.
- Correlations highlight the importance of global analysis.
- Parameters are not degenerate, allowing us to extract a_n , and with it, Δr_{np} .

Bayesian analysis result using LHC data

- Resulting posterior for Δr_{np} is compatible with PREX II and ab initio nuclear theory.
- Slightly stronger constraint than PREX II ($\Delta r_{np} = 0.283 \pm 0.071$).
- Result is in principle improvable with better Bayesian analyses.
 - May be hard to do in practice.
 - The current analysis already took 2M CPUh.

lear structure Bayesian analysis Neutron skin

○○○○○

Neutron skin

○○○○○

Future improvements

- We kept R_n fixed in the present analysis.
 - Bayesian analysis increases in difficulty with more parameters.
 - A priori it was not clear that this approach would work.
 - Decided to include only a_n in the first analysis.
- What can be expected from varying R_n in a future Bayesian analysis?
 - When varying R_n , as R_n grows, σ_{PbPb} increases and $\langle p_T \rangle$ decreases.
 - Smallness of of σ_{PbPb} prefers smaller R_n , possibly leading to a smaller estimate of Δr_{np} .
 - In this case bulk viscosity would need to increase to compensate for $\langle p_T \rangle$.

Nuclear structure Bayesian analysis Neutron skin Conclusions & Outlook

Conclusions & Outlook

Conclusions:

- Bayesian analysis can extract a value for the neutron skin of ²⁰⁸Pb from LHC data
- Value obtained ($\Delta r_{np} = 0.217 \pm 0.058 \, \text{fm}$) is compatible with ab initio nuclear theory and with PREX II.
- Precision obtained is comparable with PREX II.

Outlook:

- A future analysis will vary R_n as a parameter alongside a_n , removing a potential source of bias.
- One could attempt to spend more CPUh for a more precise estimate.

Bayesian analysis details

- 3000 design points.
- 18k events per design point.
- Every 15th design point has 10× more statistics, enabling to emulate 'hard' observables such as SC(n, m) and $\rho(v_2\{2\}^2, \langle p_T \rangle)$.

Posterior observables (1/3)

Posterior observables (2/3)

Posterior observables (3/3)

Comparison with polarized proton scattering

- We show the proton/neutron density as a function of radius as measured using polarized proton scattering.
- Our result agrees within error bars.
- We do not see the features found in the central region due to our use of a Woods-Saxon parameterization.

TRENTo initial conditions

■ Nucleons A and B become wounded with probability

$$P_{\rm wounded} = 1 - \exp\left(-\sigma_{\rm gg} \int d{\bf x}\, \rho_{\rm A}({\bf x}) \rho_{\rm B}({\bf x})\right), \quad \rho_{\rm A} \propto \exp\left(\frac{-|{\bf x}-{\bf x}_{\rm A}|^2}{2w^2}\right). \label{eq:pwounded}$$

■ Each wounded nucleon desposits energy into its nucleus's *thickness function* $\mathcal{T}_{A/B}$:

$$\mathcal{T}_{A/B} = \sum_{i \in \text{wounded A/B}} \gamma \exp(-|\mathbf{x} - \mathbf{x}_i|^2 / 2w^2),$$

with γ drawn from a gamma distribution with mean 1 and standard deviation $\sigma_{\rm fluct}.$

Actual formulas slightly modified because each nucleon has n_c constituents.

