Determination of the neutron skin of ²⁰⁸Pb from ultrarelativistic nuclear collisions Govert Nijs September 6, 2023 #### Based on: ■ Giacalone, GN, van der Schee, 2305.00015 Introduction - In a ²⁰⁸Pb nucleus, neutrons sit further from the center than protons. - This is quantified by the *neutron skin*: $$\Delta r_{np} = \langle r^2 \rangle_n^{1/2} - \langle r^2 \rangle_p^{1/2},$$ i.e. the difference in RMS radii of the neutron and proton distributions. - Heavy nuclei and neutron stars are sensitive to the same nuclear interactions. - \blacksquare A constraint on $\triangle r_{np}$ translates directly into a constraint on the radius of a $1.4M_{\odot}$ neutron star. - We can learn something about the low T. high μ_B region even at LHC energies! #### How to measure neutron skin? Introduction - To measure the neutron skin, we need the distributions of protons and neutrons inside the nucleus. - The proton distribution distribution is well-known from electron scattering. - Several different methods are in use for the neutron distribution: - Polarized electron scattering off ²⁰⁸Pb (PREX). - Photon tomography of ¹⁹⁷Au (STAR). - Heavy ion collisions provide a completely orthogonal method. - Sensitive to the total matter distribution inside the nucleus. - Purely gluonic measurement. #### Effects of nuclear structure on soft observables - The STAR isobar run sparked great interest in nuclear structure in heavy ion collisions. - Originally intended to measure the chiral magnetic effect. - Differences in the shapes of ⁹⁶₄₄Ru and ⁹⁶₄₀Zr lead to differences in soft observables. - We can distinguish several possibilities for the shapes of ⁹⁶/₄₄Ru and ⁹⁶/₄₀Zr, with model 5 giving the best agreement. - Isobar nature of ⁹⁶₄₄Ru and ⁹⁶₄₀Zr leads to robust ratios insensitive to details of hydrodynamics. #### Effects of nuclear structure on soft observables - The STAR isobar run sparked great interest in nuclear structure in heavy ion collisions. - Originally intended to measure the chiral magnetic effect. - Differences in the shapes of ${}^{96}_{44}$ Ru and $^{96}_{40}\mathrm{Zr}$ lead to differences in soft observables. - We can distinguish several possibilities for the shapes of ⁹⁶₄₄Ru and $^{96}_{40}$ Zr, with model 5 giving the best agreement. - Isobar nature of ⁹⁶/₄₄Ru and ⁹⁶/₄₀Zr leads to robust ratios insensitive to details of hydrodynamics. #### Effects of nuclear structure on soft observables - The STAR isobar run sparked great interest in nuclear structure in heavy ion collisions. - Originally intended to measure the chiral magnetic effect. - Differences in the shapes of ${}^{96}_{44}$ Ru and ${}^{96}_{40}$ Zr lead to differences in soft observables. - We can distinguish several possibilities for the shapes of ⁹⁶₄₄Ru and $^{96}_{40}$ Zr, with model 5 giving the best agreement. - Isobar nature of ⁹⁶/₄₄Ru and ⁹⁶/₄₀Zr leads to robust ratios insensitive to details of hydrodynamics. - The isobar run was particularly sensitive to nuclear structure, because other effects approximately cancel in the ratio. - PbPb collisions at LHC energies however are not paired with anything close in mass. - Extraction of the ²⁰⁸Pb neutron skin from PbPb collisions alone will need to distinguish nuclear structure effects from the various model parameters. - Need Bayesian analysis to perform a systematic fit to take into account such correlations. - In principle, Bayesian analysis is simply a fit to data. - In practice the process is more complicated: - Generate a large number of randomly chosen parameter sets called design points. - Run the model for each one to obtain the prior. - Train the emulator - Run the MCMC to obtain the posterior. - The posterior then is a list of likely parameter sets. - In principle, Bayesian analysis is simply a fit to data. - In practice the process is more complicated: - Generate a large number of randomly chosen parameter sets called design points. - Run the model for each one to obtain the prior. - Train the emulator. - Run the MCMC to obtain the posterior. - The posterior then is a list of likely parameter sets. - In principle, Bayesian analysis is simply a fit to data. - In practice the process is more complicated: - Generate a large number of randomly chosen parameter sets called design points. - Run the model for each one to obtain the prior. - Train the emulator. - Run the MCMC to obtain the posterior. - The posterior then is a list of likely parameter sets. - In principle, Bayesian analysis is simply a fit to data. - In practice the process is more complicated: - Generate a large number of randomly chosen parameter sets called design points. - Run the model for each one to obtain the prior. - Train the emulator. - Run the MCMC to obtain the posterior. - The posterior then is a list of likely parameter sets. ## Model used: Trajectum - New heavy ion code developed in Utrecht/MIT/CERN. - Trajectum is the old Roman name for Utrecht - Contains initial stage, hydrodynamics and freeze-out, as well as an analysis suite. - Easy to use, example parameter files distributed alongside the source code. - Fast, fully parallelized. - Figure (20k oversampled PbPb events at 2.76 TeV) computes on a laptop in 21h. - Bayesian analysis requires $\mathcal{O}(1000)$ similar calculations to this one. - Publicly available at sites.google.com/ view/govertnijs/trajectum/. #### Data used: 670 individual data points | √: data used | | | | | | | | | | |---------------------------------------|---------------|-------------|-----------|---------------|-------|-------------|----------------------|---|----------| | 🕒: data exists | PbPb 2.76 TeV | | | PbPb 5.02 TeV | | | <i>p</i> Pb 5.02 TeV | | | | X: data does not exist | incl. | π^{\pm} | K^{\pm} | р | incl. | π^{\pm} | K^{\pm} | р | incl. | | σ | X | X | X | X | 1 | X | X | X | ✓ | | dN/dy | 1 | 1 | ✓ | 1 | 1 | 1 | 1 | 1 | | | $\langle p_T angle$ | X | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | | $dE_T/d\eta$ | 1 | X | X | X | X | X | X | X | X | | $\delta p_T/\langle p_T \rangle$ | 1 | X | X | X | X | X | X | Х | X | | $v_{2,3,4}\{2\}$ | ✓ | (1) | | | 1 | X | X | X | | | <i>v</i> ₂ {4} | 1 | X | X | X | 1 | X | X | X | | | d^2N/dp_Tdy | X | 1 | ✓ | 1 | X | 1 | ✓ | 1 | X | | $v_2\{2\}(p_T)$ | X | 1 | ✓ | 1 | X | 1 | 1 | 1 | X | | $v_3\{2\}(p_T)$ | X | 1 | | | X | 1 | | | X | | NSC(2,3) | | X | X | X | 1 | X | X | X | X | | NSC(2,4) | | X | X | X | / | X | X | X | X | | $\rho(v_2\{2\}^2,\langle p_T\rangle)$ | X | X | X | Х | 1 | X | X | Х | X | ## Fitting to the pPb and PbPb cross sections - In the TRENTo model, the nucleon size is described by the Gaussian radius w. - Previous analyses favored $w \approx 1 \, \text{fm}$. - This leads to a 3σ discrepancy in σ_{PhPh} . - Fitting to the *p*Pb and PbPb cross sections lowers *w* to 0.6 fm. - σ_{PbPb} discrepancy is reduced to 1σ . - Many other observables fit slightly worse. - Smaller width is now compatible with our knowledge of the gluonic structure of the proton at low x. | | $\sigma_{PbPb}[b]$ | $\sigma_{p{\sf Pb}}[{\sf b}]$ | |-----------------------|-----------------------------------|-------------------------------| | with σ_{AA} | $\textbf{8.02} \pm \textbf{0.19}$ | 2.20 ± 0.06 | | without σ_{AA} | 8.95 ± 0.36 | 2.48 ± 0.10 | | ALICE/CMS | 7.67 ± 0.24 | 2.06 ± 0.08 | ■ Nuclear thickness functions $\mathcal{T}_{A/B}$ deposit matter into the initial state energy density \mathcal{T} as follows: $$\mathcal{T} \propto \left(rac{\mathcal{T}_A^p + \mathcal{T}_B^p}{2} ight)^{q/p} \stackrel{p o 0}{=} (\mathcal{T}_A \mathcal{T}_B)^{q/2}.$$ - Previous analyses implicitly set q = 1. - The fit to experimental data favors $q \approx 4/3$. - Previous default q = 1 is disfavored. - Binary scaling q = 2 is ruled out. - $\mathbf{q} = 4/3$ indicates that $\sqrt{\mathcal{T}_A \mathcal{T}_B}$ behaves like an entropy density. #### The Woods-Saxon distribution Nucleon positions are drawn from a Woods-Saxon distribution: $$ho_{\mathsf{WS}}(r) \propto rac{1}{1 + \exp\left(rac{r-R}{a} ight)}.$$ - We fix *R* for both protons and neutrons. - We fix a for protons, while varying a_n as a parameter. - Neutron skin $\Delta r_{np} = \langle r^2 \rangle_n^{1/2} \langle r^2 \rangle_n^{1/2}$ strongly depends on a_n : $$\langle r^2 angle_{\mathrm{WS}} = rac{12a^2 \operatorname{Li}_5\left(-e^{R/a} ight)}{\operatorname{Li}_3\left(-e^{R/a} ight)}.$$ Neutron skin 00000 | | proton | neutron | |---------------|--------|---------| | R [fm] | 6.68 | 6.69 | | <i>a</i> [fm] | 0.447 | a_n | Nucleon positions are drawn from a Woods-Saxon distribution: $$ho_{\mathsf{WS}}(r) \propto rac{1}{1 + \exp\left(rac{r-R}{a} ight)}.$$ - We fix *R* for both protons and neutrons. - We fix a for protons, while varying a_n as a parameter. - Neutron skin $\Delta r_{np} = \langle r^2 \rangle_n^{1/2} \langle r^2 \rangle_p^{1/2}$ strongly depends on a_n : $$\langle r^2 angle_{\mathrm{WS}} = rac{12a^2 \operatorname{Li}_5\left(-e^{R/a} ight)}{\operatorname{Li}_3\left(-e^{R/a} ight)}.$$ | | proton | neutron | |---------------|--------|---------| | R [fm] | 6.68 | 6.69 | | <i>a</i> [fm] | 0.447 | a_n | - Initial geometry is sensitive to a_n . Larger nuclei lead to: - Larger hadronic PbPb cross-section. - Larger initial QGP size, - Smaller initial QGP eccentricity. - Final state observables are in turn sensitive to initial geometry. Larger Δr_{np} leads to: - Larger hadronic PbPb cross-section. - Smaller charged particle yield, - Smaller mean transverse momentum. - Smaller elliptic flow. - Initial geometry is sensitive to a_n . Larger nuclei lead to: - Larger hadronic PbPb cross-section. - Larger initial QGP size, - Smaller initial QGP eccentricity. - Final state observables are in turn sensitive to initial geometry. Larger Δr_{nn} leads to: - Larger hadronic PbPb cross-section. - Smaller charged particle yield, - Smaller mean transverse momentum. - Smaller elliptic flow. - Initial geometry is sensitive to a_n. Larger nuclei lead to: - Larger hadronic PbPb cross-section, - Larger initial QGP size, - Smaller initial QGP eccentricity. - Final state observables are in turn sensitive to initial geometry. Larger Δr_{np} leads to: - Larger hadronic PbPb cross-section, - Smaller charged particle yield, - Smaller mean transverse momentum, - Smaller elliptic flow. - Initial geometry is sensitive to a_n. Larger nuclei lead to: - Larger hadronic PbPb cross-section, - Larger initial QGP size, - Smaller initial QGP eccentricity. - Final state observables are in turn sensitive to initial geometry. Larger Δr_{np} leads to: - Larger hadronic PbPb cross-section, - Smaller charged particle yield, - Smaller mean transverse momentum. - Smaller elliptic flow. - a_n is not the only parameter affecting the initial geometry, leading to correlations. a_n : - anticorrelates with p. - mildly anticorrelates with both w and q. - Correlations highlight the importance of global analysis. - Parameters are not degenerate, allowing us to extract a_n , and with it, Δr_{np} . # Bayesian analysis result using LHC data - Resulting posterior for Δr_{np} is compatible with PREX II and ab initio nuclear theory. - Slightly stronger constraint than PREX II ($\Delta r_{np} = 0.283 \pm 0.071$). - Result is in principle improvable with better Bayesian analyses. - May be hard to do in practice. - The current analysis already took 2M CPUh. lear structure Bayesian analysis Neutron skin ○○○○○ Neutron skin ○○○○○ #### Future improvements - We kept R_n fixed in the present analysis. - Bayesian analysis increases in difficulty with more parameters. - A priori it was not clear that this approach would work. - Decided to include only a_n in the first analysis. - What can be expected from varying R_n in a future Bayesian analysis? - When varying R_n , as R_n grows, σ_{PbPb} increases and $\langle p_T \rangle$ decreases. - Smallness of of σ_{PbPb} prefers smaller R_n , possibly leading to a smaller estimate of Δr_{np} . - In this case bulk viscosity would need to increase to compensate for $\langle p_T \rangle$. Nuclear structure Bayesian analysis Neutron skin Conclusions & Outlook #### Conclusions & Outlook #### Conclusions: - Bayesian analysis can extract a value for the neutron skin of ²⁰⁸Pb from LHC data - Value obtained ($\Delta r_{np} = 0.217 \pm 0.058 \, \text{fm}$) is compatible with ab initio nuclear theory and with PREX II. - Precision obtained is comparable with PREX II. #### Outlook: - A future analysis will vary R_n as a parameter alongside a_n , removing a potential source of bias. - One could attempt to spend more CPUh for a more precise estimate. ## Bayesian analysis details - 3000 design points. - 18k events per design point. - Every 15th design point has 10× more statistics, enabling to emulate 'hard' observables such as SC(n, m) and $\rho(v_2\{2\}^2, \langle p_T \rangle)$. # Posterior observables (1/3) # Posterior observables (2/3) # Posterior observables (3/3) ## Comparison with polarized proton scattering - We show the proton/neutron density as a function of radius as measured using polarized proton scattering. - Our result agrees within error bars. - We do not see the features found in the central region due to our use of a Woods-Saxon parameterization. #### TRENTo initial conditions ■ Nucleons A and B become wounded with probability $$P_{\rm wounded} = 1 - \exp\left(-\sigma_{\rm gg} \int d{\bf x}\, \rho_{\rm A}({\bf x}) \rho_{\rm B}({\bf x})\right), \quad \rho_{\rm A} \propto \exp\left(\frac{-|{\bf x}-{\bf x}_{\rm A}|^2}{2w^2}\right). \label{eq:pwounded}$$ ■ Each wounded nucleon desposits energy into its nucleus's *thickness function* $\mathcal{T}_{A/B}$: $$\mathcal{T}_{A/B} = \sum_{i \in \text{wounded A/B}} \gamma \exp(-|\mathbf{x} - \mathbf{x}_i|^2 / 2w^2),$$ with γ drawn from a gamma distribution with mean 1 and standard deviation $\sigma_{\rm fluct}.$ Actual formulas slightly modified because each nucleon has n_c constituents.