Quark Matter 2023

Contribution ID: 220 Type: Oral

Determination of the neutron skin of Pb-208 from ultrarelativistic nuclear collisions

Wednesday, 6 September 2023 14:20 (20 minutes)

In heavy nuclei the neutron distribution has a larger spatial extent than the proton distribution. This size difference represents the so-called neutron skin and is determined by the strong nuclear force in the same regime as that determining the masses and radii of neutron stars. The neutron skin of 208 Pb, owing to its simple structure and large neutron excess, has been the target of many dedicated efforts. We present a state-of-the-art global analysis to fit a hydrodynamic model to soft sector measurements of ultrarelativistic 208 Pb+ 208 Pb collisions performed at the LHC to achieve the first determination of the neutron skin of 208 Pb in scattering processes mediated by gluons at high energy. Thanks to the high sensitivity of high-energy observables such as the total hadronic cross sections and elliptic flow to the overall size of the colliding 208 Pb ions, we achieve an accurate determination of the skin: $\Delta r_{np} = 0.217 \pm 0.058$ fm. This is consistent with state-of-the-art nuclear theory predictions, and competitive in precision with a recent extraction from polarized electron scattering by the PREX collaboration at JLab.

Category

Theory

Collaboration (if applicable)

Primary authors: GIACALONE, Giuliano (Universität Heidelberg); NIJS, Govert (Massachusetts Institute of

Technology); Dr VAN DER SCHEE, Wilke (CERN)

Presenter: NIJS, Govert (Massachusetts Institute of Technology)

Session Classification: Initial State

Track Classification: Initial state