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Experimental measurements at mid-rapidity have driven 
characterization of the quark-gluon plasma 

Bayesian analyses compared mid-rapidity data to 2D 
initial state and hydrodynamic models 

Small systems in particular exhibit strong rapidity-
dependent behavior  

A 3D model in a Bayesian analysis can utilize the wealth 
of our experimental knowledge at forward/backward 
rapidities 

Introduction
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We gain new insight by:  

• Taking more (precise) measurements 

• Calibrating new models that can describe 
previously measured data

Constraining QGP Models: Bayesian Analyses

11
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3D Model Constrained on Data at Mid-rapidity
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Constraints using only mid-rapidity measurements
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This analysis 
using only 
mid-rapidity 
measurements 

Consistent 
constraints 
with previous 
analyses

JETSCAPE 2D 
calibration using 
only RHIC data at 
mid-rapidity 

PRELIMINARY

PRELIMINARY
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The Model: 3D Initial State and Hydrodynamics

•3D Monte Carlo Glauber Model 

•Valence quark hot spots 

•Energy deposited along the 
decelerating string connecting two 
colliding participants 

•Collision-by-collision fluctuating 
rapidity loss 
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Parametrization of rapidity loss function

y lo
ss

yinit

Schenke, Shen, Zhao. 

Phys. Rev. C 105, 064905 
(2022) 

Phys. Rev. C 97, 024907 
(2018)

2D Glauber density profiles

Ann. Rev. Nucl. Part. Sci. 57 (2007)

See talks by B. Schenke and Chun Shen 9/5 ! 
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The Model: Hydrodynamics and Hadronic Transport

• (3+1)D Viscous Hydrodynamics 

• Shear and bulk viscosities 
parametrized as in previous 
JETSCAPE analyses 

• Grad viscous corrections model  

• UrQMD to perform hadronic 
scatterings and decays 

• Take  = 0 (effect on  negligible) ρb v2

19

Parametrization of viscosity

Ref: Chun Shen
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• Used the following experimental data from RHIC 
collisions at 200 GeV: 

• Ran simulations across multiple HPC centers through 
ACCESS (NSF) 

• Multivariate-normal distribution used as likelihood 
function

• Trained a Gaussian process emulator to 
interpolate between design points: 

•

Model Calculations and the Analysis

20
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Emulating the Model and Validating the Analysis
• Gaussian Process Emulator: Fast surrogate for slow model
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Closure test with the viscosity parameters
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Comparing with Experimental Data
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Good agreement with data across 
systems, observables, pseudorapidity, 
centrality, and experiment 

Multiplicity in Au-Au Multiplicity in d-Au Flow in Au-Au and d-Au
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Parameter Posteriors - Rapidity Loss
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• Initial state energy deposition well 
constrained, particularly around 5 units of 
incoming rapidity 

• Comparison with data from systems at lower 
energies may provide stronger constraints in 
the lower incoming rapidity region 

PRELIMINARY
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Parameter Posteriors - Viscosity
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• Strong constraints showing a large bulk viscosity 

• Weak constraints on the shear viscosity 

Sensitivity of observables to the 
max of the bulk viscosity 

PRELIMINARY

PRELIMINARY

 max = [0.01, 0.2]ζ/s

 max = [0.01, 0.2]ζ/s
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Au-Au vs d-Au constraints
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Constrained 
on Au-Au 
only 

Stronger 
constraints 
provided on 
bulk viscosity 
by Au-Au 
measurements

Constrained 
on d-Au 
only 

Slight 
preference 
for  
in d-Au also

ζ/s ≠ 0PRELIMINARYPRELIMINARY

PRELIMINARYPRELIMINARY
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Conclusions and Outlook

• Successfully describe data across 
pseudo-rapidity for large and small 
systems at 200 GeV 

• Multiplicity and flow measurements 
at forward rapidities indicate a 
large bulk viscosity 

• Stay tuned for 3D calibration using 
broader set of experimental data
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PRELIMINARY
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THANK YOU!
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Constraints on rapidity loss from dAu or AuAu only
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Sensitivity of AuAu  to parametersdNch/dη
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Sensitivity of AuAu  to parametersv2
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Sensitivity of dAu  to parametersv2
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