

Rapidity-dependent Dynamics of the Initial State via 3D Multi-system Bayesian Calibration

Andi Mankolli
Vanderbilt University
(on behalf of the JETSCAPE Collaboration)

Experimental measurements at mid-rapidity have driven characterization of the quark-gluon plasma

Bayesian analyses compared mid-rapidity data to 2D initial state and hydrodynamic models

Experimental measurements at mid-rapidity have driven characterization of the quark-gluon plasma

Bayesian analyses compared mid-rapidity data to 2D initial state and hydrodynamic models

Experimental measurements at mid-rapidity have driven characterization of the quark-gluon plasma

Bayesian analyses compared mid-rapidity data to 2D initial state and hydrodynamic models

PHYSICAL REVIEW LETTERS 126, 242301 (2021)

Editors' Suggestion

Phenomenological Constraints on the Transport Properties of QCD Matter with Data-Driven Model Averaging

D. Everett[®], W. Ke, ^{2,3} J.-F. Paquet, ⁴ G. Vujanovic, ⁵ S. A. Bass, ⁴ L. Du, ¹ C. Gale, ⁶ M. Heffernan, ⁶ U. Heinz, ¹ D. Liyanage, ¹

Experimental measurements at mid-rapidity have driven characterization of the quark-gluon plasma

Bayesian analyses compared mid-rapidity data to 2D initial state and hydrodynamic models

PHYSICAL REVIEW LETTERS 126, 242301 (2021)

Editors' Suggestion

Phenomenological Constraints on the Transport Properties of QCD Matter with Data-Driven Model Averaging

Experimental measurements at mid-rapidity have driven characterization of the quark-gluon plasma

Bayesian analyses compared mid-rapidity data to 2D initial state and hydrodynamic models

PHYSICAL REVIEW LETTERS **126**, 202301 (2021)

PHYSICAL REVIE

Editors' Suggestion

Phenomenological Constraints with Data-

Transverse Momentum Differential Global Analysis of Heavy-Ion Collisions

Experimental measurements at mid-rapidity have driven characterization of the quark-gluon plasma

Bayesian analyses compared mid-rapidity data to 2D initial state and hydrodynamic models

PHYSICAL REVIEW LETTERS 126, 242301 (2021)

Editors' Suggestion

Phenomenological Constraints on the Transport Properties of QCD Matter with Data-Driven Model Averaging

PHYSICAL REVIEW LETTERS 126, 202301 (2021)

Transverse Momentum Differential Global Analysis of Heavy-Ion Collisions

Experimental measurements at mid-rapidity have driven characterization of the quark-gluon plasma

Bayesian analyses compared mid-rapidity data to 2D initial state and hydrodynamic models

Small systems in particular exhibit strong rapiditydependent behavior

Phys. Rev. C 83, 024913 (2011)

Phys. Rev. C 96, 064905 (2017)

Experimental measurements at mid-rapidity have driven characterization of the quark-gluon plasma

Bayesian analyses compared mid-rapidity data to 2D initial state and hydrodynamic models

Small systems in particular exhibit strong rapiditydependent behavior

9

Phys. Rev. C 72, 014904 (2005)

Phys. Rev. C 83, 024913 (2011)

Phys. Rev. C 96, 064905 (2017)

Experimental measurements at mid-rapidity have driven characterization of the quark-gluon plasma

Bayesian analyses compared mid-rapidity data to 2D initial state and hydrodynamic models

Small systems in particular exhibit strong rapiditydependent behavior

A 3D model in a Bayesian analysis can utilize the wealth of our experimental knowledge at forward/backward rapidities

Constraining QGP Models: Bayesian Analyses

We gain new insight by:

- Taking more (precise) measurements
- Calibrating new models that can describe previously measured data

Constraining QGP Models: Bayesian Analyses

We gain new insight by:

- Taking more (precise) measurements
- Calibrating new models that can describe previously measured data

3D Model Constrained on Data at Mid-rapidity

Phys. Rev. C 83, 024913 (2011)

3D Model Constrained on Data at Mid-rapidity

Constraints using only mid-rapidity measurements

This analysis using only mid-rapidity measurements

Consistent constraints with previous analyses

The Model: 3D Initial State and Hydrodynamics

•3D Monte Carlo Glauber Model

Valence quark hot spots

 Energy deposited along the decelerating string connecting two colliding participants

 Collision-by-collision fluctuating rapidity loss

See talks by B. Schenke and Chun Shen 9/5!

2D Glauber density profiles

Ann. Rev. Nucl. Part. Sci. 57 (2007)

Parametrization of rapidity loss function

The Model: 3D Initial State and Hydrodynamics

•3D Monte Carlo Glauber Model

Valence quark hot spots

 Energy deposited along the decelerating string connecting two colliding participants

 Collision-by-collision fluctuating rapidity loss

See talks by B. Schenke and Chun Shen 9/5!

2D Glauber density profiles

Ann. Rev. Nucl. Part. Sci. 57 (2007)

Parametrization of rapidity loss function

The Model: 3D Initial State and Hydrodynamics

•3D Monte Carlo Glauber Model

Valence quark hot spots

 Energy deposited along the decelerating string connecting two colliding participants

 Collision-by-collision fluctuating rapidity loss

See talks by B. Schenke and Chun Shen 9/5!

2D Glauber density profiles

Ann. Rev. Nucl. Part. Sci. 57 (2007)

Parametrization of rapidity loss function

The Model: Hydrodynamics and Hadronic Transport

- (3+1)D Viscous Hydrodynamics
 - Shear and bulk viscosities parametrized as in previous JETSCAPE analyses

- Grad viscous corrections model
- UrQMD to perform hadronic scatterings and decays

• Take ρ_b = 0 (effect on v_2 negligible)

Parametrization of viscosity

19

Model Calculations and the Analysis

 Used the following experimental data from RHIC collisions at 200 GeV:

- Ran simulations across multiple HPC centers through ACCESS (NSF)
- Multivariate-normal distribution used as likelihood function

 Trained a Gaussian process emulator to interpolate between design points:

Sample 2D parameter space (500 design points)

Covariance matrix of uncertainties

$$P(Y_{exp}| heta) \ ^{\sim} \ \left(-[Y_{exp}-Y_{sim}(heta)]^T[\Sigma_{exp}+\Sigma_{sim}(heta)]^{-1}[Y_{exp}-Y_{sim}(heta)]
ight)$$
 Difference between prediction and data

Model Calculations and the Analysis

 Used the following experimental data from RHIC collisions at 200 GeV:

- Ran simulations across multiple HPC centers through ACCESS (NSF)
- Multivariate-normal distribution used as likelihood function

 Trained a Gaussian process emulator to interpolate between design points:

Sample 2D parameter space (500 design points)

Covariance matrix of uncertainties

$$P(Y_{exp}| heta) \ ^{\sim} \ \left(-[Y_{exp}-Y_{sim}(heta)]^T[\Sigma_{exp}+\Sigma_{sim}(heta)]^{-1}[Y_{exp}-Y_{sim}(heta)]
ight)$$
 Difference between prediction and data

Model Calculations and the Analysis

 Used the following experimental data from RHIC collisions at 200 GeV:

- Ran simulations across multiple HPC centers through ACCESS (NSF)
- Multivariate-normal distribution used as likelihood function

 Trained a Gaussian process emulator to interpolate between design points:

Sample 2D parameter space (500 design points)

Covariance matrix of uncertainties

$$P(Y_{exp}| heta) \ ^{\sim} \ \left(-[Y_{exp}-Y_{sim}(heta)]^T[\Sigma_{exp}+\Sigma_{sim}(heta)]^{-1}[Y_{exp}-Y_{sim}(heta)]
ight)$$
 Difference between prediction and data

Gaussian Process Emulator: Fast surrogate for slow model

Closure test with the viscosity parameters

Comparing with Experimental Data

Flow in Au-Au and d-Au

Good agreement with data across systems, observables, pseudorapidity, centrality, and experiment

Parameter Posteriors - Rapidity Loss

Rapidity loss posterior

- Initial state energy deposition well constrained, particularly around 5 units of incoming rapidity
- Comparison with data from systems at lower energies may provide stronger constraints in the lower incoming rapidity region

Parameter Posteriors - Viscosity

Sensitivity of observables to the max of the bulk viscosity

Strong constraints showing a large bulk viscosity

Weak constraints on the shear viscosity

Au-Au vs d-Au constraints

Constrained on Au-Au only

Stronger constraints 0.175 provided on bulk viscosity by Au-Au 0.075 measurements 0.050

Slight preference for $\zeta/s \neq 0$ in d-Au also

Conclusions and Outlook

 Successfully describe data across pseudo-rapidity for large and small systems at 200 GeV

 Multiplicity and flow measurements at forward rapidities indicate a large bulk viscosity

 Stay tuned for 3D calibration using broader set of experimental data

THANK YOU!

Acknowledgements

JETSCAPE COLLABORATION

Constraints on rapidity loss from dAu or AuAu only

Sensitivity of AuAu $dN_{ch}/d\eta$ to parameters

Sensitivity to Parameters

Sensitivity of dAu $dN_{ch}/d\eta$ to parameters

Sensitivity to Parameters

Sensitivity of AuAu v_2 to parameters

Sensitivity to Parameters

Sensitivity of dAu v_2 to parameters

