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Heavy-ion collision

Multistage simulations of heavy-ion collisions based on
hydrodynamic models explains observed data. However..
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Hydrodynamic simulation of HIC

Hydrodynamics is applied in regime of large gradients.
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Simulations like these explains data (“unreasonable effectiveness of hydrodynamics”)
=⇒ Nearly thermalized medium formed at τ . 1 fm/c (?)
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What is the domain of hydrodynamics?

• Usual picture: Requires system to be close to local equilibrium.
Microscopic degrees of freedom relax quickly towards local equilibrium.
Long wavelength modes, associated to conservation laws, relax on longer
time scales. Separation of scales: λmfp � L ∼ {∂T, ∂µ, ∂uµ} � 1.

• Viscous hydrodynamics is formulated as an expansion in gradients of the equilibrium
fields (T, µ, uµ).

Tµν = Tµνideal + Πµν = (ε+ P )uµuν − Pgµν + πµν + Π∆µν

Landau frame choice: Tµνuν = εuµ, ε = εeq. ∆µν ≡ gµν − uµuν .
Vanishing chemical potential – no net conserved charge.

• 1st order hydrodynamics: Navier-Stokes:
Eckart, Phys. Rev.58 (1940), Landau and Lifshitz, “Fluid mechanics” (1987)

πµν = η

(
∇µuν +∇νuµ − 2

3
∆µν∇αuα

)
= 2 η σµν , Π = −ζ ∂µuµ.

However, Navier-Stokes eqs. imposes instantaneous response of dissipative fluxes
to dissipative forces – Acausal + Instabilities! Hiscock and Lindblom (1983, 1985) 3/14
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Müller-Israel-Stewart theory
Müller, Z. Phys, 198, 329 (1967), Israel and Stewart, Ann. Phys. 100, 310 (1976)

Phenomenological Israel-Stewart theory: causal and stable theory

• Starting point:

Sµ ≡ Sµ (T, µ, uµ, Nµ, Tµν) ≡ Sµ (T, µ, uµ,Π, πµν , V µ)

Here, Nµ is conserved current, V µ is particle diffusion current.

• Expand Sµ in powers of the dissipative currents around a fictitious equilibrium state

Sµ =
P

T
uµ +

1

T
uνT

µν − µ

T
Nµ −Xµ (δNµ, δTµν)

• Expanding Xµ to second-order

Sµ = suµ − µ

T
V µ − uµ

2

(
δ0Π2 − δ1VαV α + δ2παβπ

αβ
)
− γ0ΠV µ − γ1π

µ
νV

ν +O(δ3)
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• Demand entropy divergence is positive

∂µSµ = Π
T

(
−θ − Tδ0Π̇−

T

2
Πδ̇0 −

T

2
δ0Πθ − Tγ0∂µV

µ − T (1− r)V µ∇µγ0

)
︸ ︷︷ ︸

ΩΠΠ

+Vµ

(
−∇µ

( µ
T

)
+ δ1V̇

〈µ〉 +
V µ

2
δ̇1 +

δ1

2
V µθ − γ0∇µΠ− rΠ∇µγ0 − γ1∂νπ

µν − yπµν∇νγ1

)
︸ ︷︷ ︸

−ΩV V
µ

+πµν

T

(
σµν− Tδ2π̇〈µν〉−

T

2
πµν δ̇2 −

T

2
δ2π

µνθ − Tγ1∇µ〈V 〉ν − T (1− y)V 〈µ∇ν〉γ1

)
︸ ︷︷ ︸

Ωππµν

Here, ΩΠ ,ΩV ,Ωπ ≥ 0. Co-moving derivative Ȧ ≡ uµ∂µA.

• Relaxation type equations for dissipative stresses

π̇〈µν〉 +
Ωπ
Tδ2

πµν =
1

Tδ2
σµν + · · ·

• Causal and stable. Π, πµν , V µ : new fields → dynamical degrees of freedom.
Many variants of this theory: second-order hydro, aHydro, vaHydro, ME-Hydro, ..

– Israel-Stewart-Like (ISL) hydro.
Used in hydrodynamic simulations of heavy-ion.
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Hydrodynamics is applied in regime of large gradients.
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Simulations like these explains data (“unreasonable effectiveness of hydrodynamics”)
=⇒ Nearly thermalized medium formed at τ . 1 fm/c (?)

“Unreasonable effectiveness of hydrodynamics”
What is the domain of applicability of such

Israel-Stewart-like hydrodynamics?
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A simplified system

• Ultra-relativistic heavy-ion collisions admits a weakly coupled description of the
matter at early times (assume).

• The very fast logitudinal expansion of the matter tends to
drive the momentum distribution to a very flat distribution.

• Translates into the existence of two different pressures: longitudinal (PL) and
transverse (PT ).

• Approach to equilibrium: competition between

Collisions ⇒ Expansion ⇒

• Bjorken flow [J. D. Bjorken, PRD 27, 140 (1983)]: homogeneity in the transverse (x, y) plane,
boost invariance along the z (beam) direction, and reflection symmetry z → −z.
Appropriate description of early-time dynamics. 7/14



Set of special moments of distribution function
• Non-conformal Boltzmann equation in RTA approx undergoing Bjorken expansion:(

∂

∂τ
−
pz

τ

∂

∂pz

)
f(τ, p) = −

f(τ, p)− feq(p0/T )

τR(τ)

• Consider the moments:

Ln ≡
∫
p

p2
0 P2n(pz/p0) f(τ, p), Mn ≡ m2

∫
p

P2n(pz/p0) f(τ, p)

where
∫
p
≡ d3p

(2π)3 p0
and P2n is the Legendre polynomial of order 2n.

Blaizot and Yan, PLB 780 (2018) SJ, Blaizot, Bhalerao, Chen, Jaiswal, Yan; PRC 106, 044912 (2022)

• Only three moments are hydro quantities: (L0 = ε, L1, M0 = Tµµ )

ε = L0, PL = P + Π− π =
1

3
(L0 + 2L1) , PT = P + Π +

π

2
=

1

3

(
L0 − L1 −

3

2
M0

)
.

• Boltzmann equation can be recast as:
∂Ln
∂τ

= −
1

τ
(anLn + bnLn−1 + cnLn+1)− (1− δn,0)

(
Ln − Leq

n

)
τR

∂Mn

∂τ
= −

1

τ

(
a′nMn + b′nMn−1 + c′nMn+1

)
−
(
Mn −Meq

n

)
τR

The coefficients an, bn, cn, a′n, b′n, c′n are pure numbers. Depends on expansion geometry. 8/14
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Fixed point structure

• Equation of Ln moments are decoupled fromMn moments =⇒ evolution of energy
density (L0) does not depend onMn evolution.

• Consider the quantity: g0 ≡ τ
L0

∂L0
∂τ

. In the regimes where the energy density behave
as power law, g0 is the exponent in that power law.

• Define β(g0, w) ≡ w dg0
dw

where w = τ/τR. Equation for Ln becomes:

−β(g0, w) = g2
0 + g0 (a0 + a1 + w) + a0a1 − c0b1 + a0w − c0c1

L2

L0
−
c0

2
w

(
1− 3

P

ε

)

• Zeros of β(g0, w) gives fixed points.

• Free-streaming fixed points ( w � 1):
Exact fixed point: g0 = −1 (stable: PL = 0) and g0 = −2 (unstable).
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g0 = −0.93 (stable) and g0 = −2.21 (unstable). Captures FP structure.
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• Hydrodynamic fixed point (w � 1) : g∗ = −1− P/ε (governed by EoS). 9/14



Three-moment truncation

• Equation of three moments:
∂L0

∂τ
= −

1

τ
(a0L0 + c0L1) ,

∂L1

∂τ
= −

1

τ
(a1L1 + b1L0 + c1 L2 )−

(
L1 − Leq

1

)
τR

,

∂M0

∂τ
= −

1

τ

(
a′0M0 + c′0M1

)
−
(
M0 −Meq

0

)
τR

.

• Different truncation schemes for L2 andM1 leads to variants of ISL theory:
Grad 14-moment truncation and Chapman-Enskog approx. → second-order hydro
Denicol et.al., arXiv:1202.4551 (2012); Jaiswal, arXiv:1305.3480 (2013)

Using Romatschke-Strickland form of distribution function → anisotropic hydro
Romatschke, Strickland, Martinez, Heinz, Florkowski, Ryblewski, . . .

Using maximum entropy distribution → ME-hydro
Chattopadhyay, Heinz and Schaefer, arXiv:2307.10769 (2023).
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Three-moment truncation

• Equation of three moments:
∂L0

∂τ
= −

1

τ
(a0L0 + c0L1) ,

∂L1
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= −
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(
a1L1 + b1L0 + c1��ZZL2
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1

τ
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0

)
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.

• Considering three lowest moments (L0, L1 andM0) is enough to approximately
capture the exact evolution.
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Second-order hydrodynamics from moments

• Equation of three moments:
∂L0

∂τ
= −

1

τ
(a0L0 + c0L1) ,

∂L1

∂τ
= −

1

τ
(a1L1 + b1L0 + c1L2)−

(
L1 − Leq

1

)
τR

,

∂M0

∂τ
= −

1

τ

(
a′0M0 + c′0M1

)
−
(
M0 −Meq

0

)
τR

,

• Second-order hydro equations is obtained by expanding L2 andM1 till first-order in
gradients. However, there are inherent ambiguities in definition of some second-order
transport coefficients. SJ, Blaizot, Bhalerao, Chen, Jaiswal, Yan; PRC 106, 044912 (2022). SJ, Blaizot; in prep.

• Relaxation-type structure inherent in moments equations – necessary for causality
and extending domain in free-streaming regime.

• Time derivative of L1 andM0, and correspondingly, π ≡ − 2
3

(
L1 + M0

2

)
and

Π ≡ (L0 − 3P −M0) /3 in ISL hydro, captures approximately some of the features
of the collisionless regime.

Illustration ⇒ 11/14
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Second-order hydrodynamics captures free-streaming!
SJ, Blaizot, Bhalerao, Chen, Jaiswal, Yan; PRC 106, 044912 (2022)

Isotropic initial conditions.

exact KT

ISL hydro

free-streaming
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Short free-streaming regime (dotted curves) seen in both the kinetic theory and
second-order hydrodynamic. There is nothing typically “hydrodynamic” here;
hydrodynamics becomes a valid description only for times τ & τR. 12/14



Collisionless and near-equilibrium regime in ISL hydro

Chattopadhyay, SJ, Du, Heinz, Pal, PLB 824, 136820 (2021)

SJ, Chattopadhyay, Du, Heinz, Pal, PRC 105, 024911 (2022)

The second-order hydro solutions are not very
bad even in the far-off-equilibrium regime. Note
that hydrodynamics as a gradient expansion
(NS solution) diverges in this regime.
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Hydrodynamics is applied in regime of large gradients.

τ=0.4 fm/c
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• “Unreasonable effectiveness of hydrodynamics”: The success of ISL hydro in allowing
early-time description of matter expansion has nothing to do with near-equilibrium
hydrodynamic theory. It results from a subtle property of IS equations that mimic
the early time, collisionless, regime.

• Nearly thermalized medium formed at τ . 1 fm/c (?): Success of such simulations
does not imply formation of nearly equilibrated medium at early times. 14/14



Hydrodynamics is applied in regime of large gradients.
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• “Unreasonable effectiveness of hydrodynamics”: The success of ISL hydro in allowing
early-time description of matter expansion has nothing to do with near-equilibrium
hydrodynamic theory. It results from a subtle property of IS equations that mimic
the early time, collisionless, regime.

• Nearly thermalized medium formed at τ . 1 fm/c (?): Success of such simulations
does not imply formation of nearly equilibrated medium at early times.

Thank You!
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Extras



Ambiguity of second-order transport coefficients
SJ, Blaizot, Bhalerao, Chen, Jaiswal, Yan; PRC 106, 044912 (2022)

• Equation of Ln moments are decoupled fromMn moments =⇒ evolution of energy
density (L0) does not depend onMn evolution.

• Since only Π− π = c0(L1 − Leq
1 ) enters in evolution of ε, similar decoupling in the

hydrodynamic equations expected. Such decoupling holds in the ISL hydro iff

δΠΠ +
2

3
λπΠ = λΠπ +

1

3
τππ + δππ

Not satisfied by transport coefficients derived in A. Jaiswal et. al., PRC 90 (2014) 044908

• New transport coefficients derived following a different truncation for L2 andM1 appearing
in the equation for L1 andM0. Coefficients of the gradient series of Π and π unchanged.
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