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Hydrodynamic simulation of HIC

Hydrodynamics is applied in regime of large gradients.
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Simulations like these explains data (“unreasonable effectiveness of hydrodynamics”)

= Nearly thermalized medium formed at 7 < 1 fm/c (?)
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What is the domain of hydrodynamics?

e Usual picture: Requires system to be close to local equilibrium.
= Microscopic degrees of freedom relax quickly towards local equilibrium.
Long wavelength modes, associated to conservation laws, relax on longer
time scales. Separation of scales: Amep < L ~ {9T, Ou, our'} < 1.
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e Viscous hydrodynamics is formulated as an expansion in gradients of the equilibrium
fields (7, p, u*).
T =TH |+ I" = (e + P)u*u” — Pg"” + o + IIA*Y

= Landau frame choice: T""u, = eu”, € = €eq. A" = g"" —ulu".

Vanishing chemical potential — no net conserved charge.

e 1°% order hydrodynamics: Navier-Stokes:
Eckart, Phys. Rev.58 (1940), Landau and Lifshitz, “Fluid mechanics” (1987)

w“”:n(V”u"—I—V"u“—%A‘“’V&ua) =2no", II = —¢ou*.

= However, Navier-Stokes eqs. imposes instantaneous response of dissipative fluxes

to dissipative forces — Acausal + Instabilities!  Hiscock and Lindblom (1983, 1985) 3/14
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Miiller-Israel-Stewart theory

Phenomenological Israel-Stewart theory: causal and stable theory

e Starting point:
St = SH(T, p,ut, N*, TH) = SH (T, p, ", 11, 7" V)

Here, N* is conserved current, V* is particle diffusion current.

e Expand S* in powers of the dissipative currents around a fictitious equilibrium state

/2 1 w -
b=yt + Zu, T — =N — XP (SNH, 6T
g Tu Tu T (ON*,6 )

e Expanding X" to second-order
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e Demand entropy divergence is positive

T
OuSH = ( 60— T(S()H — 71_[5() — 7(501_[9 Ty0u V¥ —T(1 — T)V”VM’V())

QpIl

51
+V, ( 2 (T) L&V 4 —51 + V”@ — OVHII = rTIVHAg — y1 8y Y — ywlwvm)

—QyVH

+%( — Ty Hv) — 5 Lowwg, _ ﬂsgw#"e — Ty VHVY — (1 — y)v<#vu>71>

QrTpw

Here, O, Qv , Qr > 0. Co-moving derivative A = ut o, A.
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e Demand entropy divergence is positive
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Here, O, Qv , Qr > 0. Co-moving derivative A = ut o, A.

e Relaxation type equations for dissipative stresses

e Causal and stable. IT, 7, V* : new fields — dynamical degrees of freedom.
Many variants of this theory: second-order hydro, aHydro, vaHydro, ME-Hydro, ..
— Israel-Stewart-Like (ISL) hydro.

Used in hydrodynamic simulations of heavy-ion. 5/14



domain of applicability of such

lewart-like hydrodynamics?
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A simplified system

e Ultra-relativistic heavy-ion collisions admits a weakly coupled description of the
matter at early times (assume).

The very fast logitudinal expansion of the matter tends to
drive the momentum distribution to a very flat distribution.

Translates into the existence of two different pressures: longitudinal (Pr) and
transverse (Pr).

Approach to equilibrium: competition between

P

§ b

.. . #

Collisions = - Expansion = —_/
o e U P
/‘[‘4‘\‘ b 7
R, ot
e Bjorken flow [J.D. Bjorken, PRD 27, 140 (1983)]: homogeneity in the transverse (x,y) plane,

boost invariance along the z (beam) direction, and reflection symmetry z — —z.
Appropriate description of early-time dynamics. 7/14



Set of special moments of distribution function

e Non-conformal Boltzmann equation in RTA approx undergoing Bjorken expansion:
< 0 p: O f(Tvp)fqu(pO/T)

5~ B ) (o = - TEES

8/14



Set of special moments of distribution function

e Non-conformal Boltzmann equation in RTA approx undergoing Bjorken expansion:
< 9 p: 0 f(7,p) = fea(po/T)

5 E ) Som =B

e Consider the moments:

Lo= / P2 Pon(ps/po) f(1,p)y  Mu=m? / Pon (e 50) (7 8)

= (2;1);3‘71)0 and P, is the Legendre polynomial of order 2n.

Blaizot and Yan, PLB 780 (2018) SJ, Blaizot, Bhalerao, Chen, Jaiswal, Yan; PRC 106, 044912 (2022)

where fp
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e Only three moments are hydro quantities: (Lo =€, L1, Mo =T})

1 1 3
e = Lo, PL=P+H—7T:§(£0+2£1), PT=P+H+g=§(£0—£1—§M0>.
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e Consider the moments:
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= (2;1);3‘7?)0 and P, is the Legendre polynomial of order 2n.

Blaizot and Yan, PLB 780 (2018) SJ, Blaizot, Bhalerao, Chen, Jaiswal, Yan; PRC 106, 044912 (2022)

where fp

e Only three moments are hydro quantities: (Lo =€, L1, Mo =T})

1 1 3
e = Lo, PL=P+H—7T:§(£0+2£,1), PT=P+H+g=§(£0—£1—§M0>.

e Boltzmann equation can be recast as:

Ly, 1 Ln — Ly

== (anﬁn +bnLpn—1+ Cn£77r+l) - (1 - 571,0)¥
or T TR

M., (Mn — M)

1
=—=(apMn + b, Mp_1+cpMpt1) —
or T -

The coefficients @, by, cn, al,, by, ¢, are pure numbers. Depends on expansion geometry. 8/14



Fixed point structure

e Equation of £,, moments are decoupled from M,, moments = evolution of energy
density (Lo) does not depend on M,, evolution.
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e Equation of £,, moments are decoupled from M,, moments = evolution of energy
density (Lo) does not depend on M,, evolution.

T EQ

e Consider the quantity: go = . In the regimes where the energy density behave

as power law, go is the exponent in that power law.

e Define B(go,w) = w% where w = 7/7r. Equation for £,, becomes:

L @ P
—B(g0, w) = g2 + go (ao + a1 +w) + agar — cob1 + apw — 0001?2 = ?O (1 = 3:)
0
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e Zeros of B(go,w) gives fixed points.

e Free-streaming fixed points ((w < 1):
= Exact fixed point: go = —1 (stable: P, = 0) and go = —2 (unstable).
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e Equation of £,, moments are decoupled from M,, moments = evolution of energy
density (Lo) does not depend on M,, evolution.

T 9Lo
Ly O °

as power law, go is the exponent in that power law.

e Consider the quantity: go = In the regimes where the energy density behave

e Define B(go,w) = w% where w = 7/7r. Equation for £,, becomes:

P
—B(go,w) = 9(2) + go (ap + a1 + w) + apar — cob1 + apw — COCIX_ %)w (1 — 3?>
C
e Zeros of $(go,w) gives fixed points.

o Free-streaming fixed points ((w < 1):
» Exact fixed point: go = —1 (stable: P, = 0) and go = —2 (unstable).

= Considering only the two lowest moments:
go = —0.93 (stable) and go = —2.21 (unstable). Captures FP structure.
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density (Lo) does not depend on M,, evolution.

e Consider the quantity: go = LOA In the regimes where the energy density behave

as power law, go is the exponent in that power law.

e Define B(go,w) = w‘iﬁg where w = 7/7r. Equation for £,, becomes:

L c P
—B(g0,w) = g2 + go (ap + a1 + w) + agar — cob1+aow — 00617275 <1 — 3;)
0

e Zeros of B(go,w) gives fixed points.

e Free-streaming fixed points ((w < 1):
= Exact fixed point: go = —1 (stable: P, = 0) and go = —2 (unstable).

= Considering only the two lowest moments:
go = —0.93 (stable) and go = —2.21 (unstable). Captures FP structure.

e Hydrodynamic fixed point (w > 1) : g. = —1 — P/e (governed by EoS). 9/14



Three-moment truncation

e Equation of three moments:

s . e L iz _L"cq
877—0 :—;(aoﬂo-i-Coﬁl)y 671 :—;(a1£1+b1£0+6152)—(1771)7
R
M 1 Mo — M4
0 = L (Mo + ch iy ) — Mo = Mo
or T TR

e Different truncation schemes for £ and M, leads to variants of ISL theory:
Grad 14-moment truncation and Chapman-Enskog approx. — second-order hydro
Denicol et.al., arXiv:1202.4551 (2012); Jaiswal, arXiv:1305.3480 (2013)
Using Romatschke-Strickland form of distribution function — anisotropic hydro
Romatschke, Strickland, Martinez, Heinz, Florkowski, Ryblewski, . ..
Using maximum entropy distribution — ME-hydro

Chattopadhyay, Heinz and Schaefer, arXiv:2307.10769 (2023).
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Three-moment truncation

e Equation of three moments:

oL 1 oL 1 £, -4
6770 = (aoLo + coLl1), 877'1 = (a1l +b1Lo+ c13€) — (17_71),
R
oM 1 Mo — M4
a 0 :*7(a6M0+06M)7M'
T T R

e Considering three lowest moments (Lo, £1 and M) is enough to approximately
capture the exact evolution.
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Second-order hydrodynamics from moments

e Equation of three moments:

oL 1 0L 1 B = [
877'0 =z (a0Lo + coLly), df; = (a1 L1 +b1Lo +c1L2) — ¥7
R
OM 1 Mo — M4
OMo _ L (g Mo + ehaty) — = MoT)
or T R

e Second-order hydro equations is obtained by expanding L2 and M; till first-order in
gradients. However, there are inherent ambiguities in definition of some second-order

tr‘ansport coefficients. SJ, Blaizot, Bhalerao, Chen, Jaiswal, Yan; PRC 106, 044912 (2022). SJ, Blaizot; in prep.
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Second-order hydrodynamics from moments

e Equation of three moments:

oL 1 oL 1 B = [
877—0 :_;(a()l:()+c()£1)7 difrl :_;(a1£1+b1£0+01£2)_¥7
R
oM 1 Mo — M4
0 — L (Mo + epty) — L0
or T R

e Second-order hydro equations is obtained by expanding L2 and M; till first-order in
gradients. However, there are inherent ambiguities in definition of some second-order

transport coefficients. SJ, Blaizot, Bhalerao, Chen, Jaiswal, Yan; PRC 106, 044912 (2022). SJ, Blaizot; in prep.

e Relaxation-type structure inherent in moments equations — necessary for causality

and extending domain in free-streaming regime.

e Time derivative of £1 and My, and correspondingly, m = —% (£1 + %) and
II= (Lo — 3P — My) /3 in ISL hydro, captures approximately some of the features

of the collisionless regime.

[lustration = 11/14



Second-order hydrodynamics captures free-streaming!

Isotropic initial conditions.
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Short free-streaming regime (dotted curves) seen in both the kinetic theory and
second-order hydrodynamic. There is nothing typically “hydrodynamic” here;

hydrodynamics becomes a valid description only for times 7 > 7g. 12/14



Collisionless and near-equilibrium regime in ISL hydro

~shear stress/pressure

~bulk stress/pressure

-1
Re
piq

| PR | MR

0.1
14F
12F
Chattopadhyay, SJ, Du, Heinz, Pal, PLB 824, 136820 (2021) 1B
SJ, Chattopadhyay, Du, Heinz, Pal, PRC 105, 024911 (2022) 0.8F |
-
. iam 0.6 |\
The second-order hydro solutions are not very 04 bl
bad even in the far-off-equilibrium regime. Note 0'2 AR
that hydrodynamics as a gradient expansion '0 E -
(NS solution) diverges in this regime. 02k

13/14




.
L
“Unreasonable effectiveness of hydrodynamics” The success of ISL hydro in allowing
early-time description of matter expansion has nothing to do with near-equilibrium
hydrodynamic theory. It results from a subtle property of IS equations that mimic
the early time, collisionless, regime.

Nearly thermalized medium formed at 7 < 1 fm/c (7): Success of such simulations
does not imply formation of nearly equilibrated medium at early times. 14/14
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Extras



Ambiguity of second-order transport coefficients

e Equation of £,, moments are decoupled from M,, moments = evolution of energy
density (Lo) does not depend on M., evolution.

e Since only Il — 7 = ¢o(L1 — Eiq) enters in evolution of €, similar decoupling in the
hydrodynamic equations expected. Such decoupling holds in the ISL hydro iff
2 1
6HH 2l g)‘wn = Arr + 57_7\'7\' + Ornr
Not satisfied by transport coefficients derived in A. Jaiswal et. al., PRC 90 (2014) 044908

e New transport coefficients derived following a different truncation for L2 and M appearing
in the equation for £1 and M. Coefficients of the gradient series of II and 7 unchanged.
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