Applicability of higher-order hydrodynamics in heavy-ion collisions

Sunil Jaiswal

The Ohio State University, Columbus

Quark Matter 2023
Houston, Texas

September 5, 2023

Based on arXiv:2208.02750
Collaborators: J. P. Blaizot, R. S. Bhalerao, Z. Chen, A. Jaiswal, L. Yan

Heavy-ion collision

Multistage simulations of heavy-ion collisions based on hydrodynamic models explains observed data. However..

Hydrodynamic simulation of HIC

Hydrodynamics is applied in regime of large gradients.

Simulations like these explains data ("unreasonable effectiveness of hydrodynamics")

Hydrodynamic simulation of HIC

Hydrodynamics is applied in regime of large gradients.

Simulations like these explains data ("unreasonable effectiveness of hydrodynamics")
\Longrightarrow Nearly thermalized medium formed at $\tau \lesssim 1 \mathrm{fm} / \mathrm{c}(?)$

What is the domain of hydrodynamics?

- Usual picture: Requires system to be close to local equilibrium.
- Microscopic degrees of freedom relax quickly towards local equilibrium. Long wavelength modes, associated to conservation laws, relax on longer time scales. Separation of scales: $\lambda_{\operatorname{mfp}} \ll L \sim\left\{\partial T, \partial \mu, \partial u^{\mu}\right\} \ll 1$.
- Viscous hydrodynamics is formulated as an expansion in gradients of the equilibrium

Vanishing chemical potential - no net conserved charge

- $1^{\text {st }}$ order hydrodynamics: Navier-Stokes:
- However, Navier-Stokes eqs. imposes instantaneous response of dissipative fluxes to dissinative forces - Acausal + Instabilities!

What is the domain of hydrodynamics?

- Usual picture: Requires system to be close to local equilibrium.
- Microscopic degrees of freedom relax quickly towards local equilibrium. Long wavelength modes, associated to conservation laws, relax on longer time scales. Separation of scales: $\lambda_{\operatorname{mfp}} \ll L \sim\left\{\partial T, \partial \mu, \partial u^{\mu}\right\} \ll 1$.
- Viscous hydrodynamics is formulated as an expansion in gradients of the equilibrium fields $\left(T, \mu, u^{\mu}\right)$.

$$
T^{\mu \nu}=T_{\text {ideal }}^{\mu \nu}+\Pi^{\mu \nu}=(\epsilon+P) u^{\mu} u^{\nu}-P g^{\mu \nu}+\pi^{\mu \nu}+\Pi \Delta^{\mu \nu}
$$

- Landau frame choice: $T^{\mu \nu} u_{\nu}=\epsilon u^{\mu}, \quad \epsilon=\epsilon_{\mathrm{eq}} \cdot \Delta^{\mu \nu} \equiv g^{\mu \nu}-u^{\mu} u^{\nu}$. Vanishing chemical potential - no net conserved charge.

[^0] to dissinative forces - Acansal + Instahilities!

What is the domain of hydrodynamics?

- Usual picture: Requires system to be close to local equilibrium.
- Microscopic degrees of freedom relax quickly towards local equilibrium. Long wavelength modes, associated to conservation laws, relax on longer time scales. Separation of scales: $\lambda_{\text {mfp }} \ll L \sim\left\{\partial T, \partial \mu, \partial u^{\mu}\right\} \ll 1$.
- Viscous hydrodynamics is formulated as an expansion in gradients of the equilibrium fields (T, μ, u^{μ}).

$$
T^{\mu \nu}=T_{\text {ideal }}^{\mu \nu}+\Pi^{\mu \nu}=(\epsilon+P) u^{\mu} u^{\nu}-P g^{\mu \nu}+\pi^{\mu \nu}+\Pi \Delta^{\mu \nu}
$$

- Landau frame choice: $T^{\mu \nu} u_{\nu}=\epsilon u^{\mu}, \quad \epsilon=\epsilon_{\mathrm{eq}} \cdot \Delta^{\mu \nu} \equiv g^{\mu \nu}-u^{\mu} u^{\nu}$. Vanishing chemical potential - no net conserved charge.
- $1^{\text {st }}$ order hydrodynamics: Navier-Stokes:

Eckart, Phys. Rev. 58 (1940), Landau and Lifshitz, "Fluid mechanics" (1987)

$$
\pi^{\mu \nu}=\eta\left(\nabla^{\mu} u^{\nu}+\nabla^{\nu} u^{\mu}-\frac{2}{3} \Delta^{\mu \nu} \nabla_{\alpha} u^{\alpha}\right)=2 \eta \sigma^{\mu \nu}, \quad \Pi=-\zeta \partial_{\mu} u^{\mu} .
$$

- However, Navier-Stokes eqs. imposes instantaneous response of dissipative fluxes to dissipative forces - Acausal + Instabilities! Hiscock and Lindblom $(1983,1985)$

Müller-Israel-Stewart theory

Phenomenological Israel-Stewart theory: causal and stable theory

- Starting point:

$$
S^{\mu} \equiv S^{\mu}\left(T, \mu, u^{\mu}, N^{\mu}, T^{\mu \nu}\right) \equiv S^{\mu}\left(T, \mu, u^{\mu}, \Pi, \pi^{\mu \nu}, V^{\mu}\right)
$$

Here, N^{μ} is conserved current, V^{μ} is particle diffusion current.

- Expand S^{μ} in powers of the dissipative currents around a fictitious equilibrium state

$$
S^{\mu}=\frac{P}{T} u^{\mu}+\frac{1}{T} u_{\nu} T^{\mu \nu}-\frac{\mu}{T} N^{\mu}-X^{\mu}\left(\delta N^{\mu}, \delta T^{\mu \nu}\right)
$$

- Expanding X^{μ} to second-order

$$
S^{\mu}=s u^{\mu}-\frac{\mu}{T} V^{\mu}-\frac{u^{\mu}}{2}\left(\delta_{0} \Pi^{2}-\delta_{1} V_{\alpha} V^{\alpha}+\delta_{2} \pi_{\alpha \beta} \pi^{\alpha \beta}\right)-\gamma_{0} \Pi V^{\mu}-\gamma_{1} \pi_{\nu}^{\mu} V^{\nu}+\mathcal{O}\left(\delta^{3}\right)
$$

- Demand entropy divergence is positive

$$
\begin{aligned}
\partial_{\mu} S^{\mu} & =\frac{\Pi}{T} \underbrace{\left(-\theta-T \delta_{0} \dot{\Pi}-\frac{T}{2} \Pi \dot{\delta}_{0}-\frac{T}{2} \delta_{0} \Pi \theta-T \gamma_{0} \partial_{\mu} V^{\mu}-T(1-r) V^{\mu} \nabla_{\mu} \gamma_{0}\right)}_{\Omega_{\Pi} \Pi} \\
& +V_{\mu} \underbrace{\left(-\nabla^{\mu}\left(\frac{\mu}{T}\right)+\delta_{1} \dot{V}^{\langle\mu\rangle}+\frac{V^{\mu}}{2} \dot{\delta}_{1}+\frac{\delta_{1}}{2} V^{\mu} \theta-\gamma_{0} \nabla^{\mu} \Pi-r \Pi \nabla^{\mu} \gamma_{0}-\gamma_{1} \partial_{\nu} \pi^{\mu \nu}-y \pi^{\mu \nu} \nabla_{\nu} \gamma_{1}\right)}_{-\Omega_{V} V^{\mu}} \\
& +\frac{\pi^{\mu \nu}}{T} \underbrace{\left(\sigma^{\mu \nu}-T \delta_{2} \dot{\pi}^{\langle\mu \nu\rangle}-\frac{T}{2} \pi^{\mu \nu} \dot{\delta}_{2}-\frac{T}{2} \delta_{2} \pi^{\mu \nu} \theta-T \gamma_{1} \nabla^{\mu\langle } V^{\rangle \nu}-T(1-y) V^{\langle\mu} \nabla^{\nu\rangle} \gamma_{1}\right)}_{\Omega_{\pi} \pi_{\mu \nu}}
\end{aligned}
$$

Here, $\Omega_{\Pi}, \Omega_{V}, \Omega_{\pi} \geq 0$. Co-moving derivative $\dot{A} \equiv u^{\mu} \partial_{\mu} A$.

- Relaxation type equations for dissipative stresses
- Causal and stable. $\Pi, \pi^{\mu \nu}, V^{\mu}$: new fields \rightarrow dynamical degrees of freedom

Manve variante of thic theorv: second-order hydro aHviro vaHviro MF-Hvdro,
Israel-Stewart-Like (ISL) hydro

- Demand entropy divergence is positive

$$
\begin{aligned}
\partial_{\mu} S^{\mu} & =\frac{\Pi}{T} \underbrace{\left(-\theta-T \delta_{0} \dot{\Pi}-\frac{T}{2} \Pi \dot{\delta}_{0}-\frac{T}{2} \delta_{0} \Pi \theta-T \gamma_{0} \partial_{\mu} V^{\mu}-T(1-r) V^{\mu} \nabla_{\mu} \gamma_{0}\right)}_{\Omega_{\Pi} \Pi} \\
& +V_{\mu} \underbrace{\left(-\nabla^{\mu}\left(\frac{\mu}{T}\right)+\delta_{1} \dot{V}^{\langle\mu\rangle}+\frac{V^{\mu}}{2} \dot{\delta}_{1}+\frac{\delta_{1}}{2} V^{\mu} \theta-\gamma_{0} \nabla^{\mu} \Pi-r \Pi \nabla^{\mu} \gamma_{0}-\gamma_{1} \partial_{\nu} \pi^{\mu \nu}-y \pi^{\mu \nu} \nabla_{\nu} \gamma_{1}\right)}_{-\Omega_{V} V^{\mu}} \\
& +\frac{\pi^{\mu \nu}}{T} \underbrace{\left(\sigma^{\mu \nu}-T \delta_{2} \dot{\pi}^{\langle\mu \nu\rangle}-\frac{T}{2} \pi^{\mu \nu} \dot{\delta}_{2}-\frac{T}{2} \delta_{2} \pi^{\mu \nu} \theta-T \gamma_{1} \nabla^{\mu\langle } V^{\rangle \nu}-T(1-y) V^{\langle\mu} \nabla^{\nu\rangle} \gamma_{1}\right)}_{\Omega_{\pi} \pi_{\mu \nu}}
\end{aligned}
$$

Here, $\Omega_{\Pi}, \Omega_{V}, \Omega_{\pi} \geq 0$. Co-moving derivative $\dot{A} \equiv u^{\mu} \partial_{\mu} A$.

- Relaxation type equations for dissipative stresses

$$
\dot{\pi}^{\langle\mu \nu\rangle}+\frac{\Omega_{\pi}}{T \delta_{2}} \pi^{\mu \nu}=\frac{1}{T \delta_{2}} \sigma^{\mu \nu}+\cdots
$$

Meny variants of this theory: second-order hydro, aHydro, vaHydro, ME-Hydro,
Israel-Stewart-Like (ISL) hydro.
Used in hydrodynamic simulations of heavor-ion

- Demand entropy divergence is positive

$$
\begin{aligned}
\partial_{\mu} S^{\mu} & =\frac{\Pi}{T} \underbrace{\left(-\theta-T \delta_{0} \dot{\Pi}-\frac{T}{2} \Pi \dot{\delta}_{0}-\frac{T}{2} \delta_{0} \Pi \theta-T \gamma_{0} \partial_{\mu} V^{\mu}-T(1-r) V^{\mu} \nabla_{\mu} \gamma_{0}\right)}_{\Omega_{\Pi} \Pi} \\
& +V_{\mu} \underbrace{\left(-\nabla^{\mu}\left(\frac{\mu}{T}\right)+\delta_{1} \dot{V}^{\langle\mu\rangle}+\frac{V^{\mu}}{2} \dot{\delta}_{1}+\frac{\delta_{1}}{2} V^{\mu} \theta-\gamma_{0} \nabla^{\mu} \Pi-r \Pi \nabla^{\mu} \gamma_{0}-\gamma_{1} \partial_{\nu} \pi^{\mu \nu}-y \pi^{\mu \nu} \nabla_{\nu} \gamma_{1}\right)}_{-\Omega_{V} V^{\mu}} \\
& +\frac{\pi^{\mu \nu}}{T} \underbrace{\left(\sigma^{\mu \nu}-T \delta_{2} \dot{\pi}^{\langle\mu \nu\rangle}-\frac{T}{2} \pi^{\mu \nu} \dot{\delta}_{2}-\frac{T}{2} \delta_{2} \pi^{\mu \nu} \theta-T \gamma_{1} \nabla^{\mu\langle } V^{\rangle \nu}-T(1-y) V^{\langle\mu} \nabla^{\nu\rangle} \gamma_{1}\right)}_{\Omega_{\pi} \pi_{\mu \nu}}
\end{aligned}
$$

Here, $\Omega_{\Pi}, \Omega_{V}, \Omega_{\pi} \geq 0$. Co-moving derivative $\dot{A} \equiv u^{\mu} \partial_{\mu} A$.

- Relaxation type equations for dissipative stresses

$$
\dot{\pi}^{\langle\mu \nu\rangle}+\frac{\Omega_{\pi}}{T \delta_{2}} \pi^{\mu \nu}=\frac{1}{T \delta_{2}} \sigma^{\mu \nu}+\cdots
$$

- Causal and stable. $\Pi, \pi^{\mu \nu}, V^{\mu}$: new fields \rightarrow dynamical degrees of freedom.

Many variants of this theory: second-order hydro, aHydro, vaHydro, ME-Hydro, ..

- Israel-Stewart-Like (ISL) hydro.

Used in hydrodynamic simulations of heavy-ion.

Simulations like these explains data ("unreasonable effectiveness of hydrodynamics"
\Longrightarrow Nearler tharmalized madirm formed at $\tau<1 \mathrm{fm} /$

A simplified system

- Ultra-relativistic heavy-ion collisions admits a weakly coupled description of the matter at early times (assume).
- The very fast logitudinal expansion of the matter tends to drive the momentum distribution to a very flat distribution.

- Translates into the existence of two different pressures: longitudinal $\left(P_{L}\right)$ and transverse $\left(P_{T}\right)$.
- Approach to equilibrium: competition between

Collisions \Rightarrow

- Bjorken flow [J. D. Bjorken, PRD 27, 140 (1983)]: homogeneity in the transverse (x, y) plane, boost invariance along the z (beam) direction, and reflection symmetry $z \rightarrow-z$. Appropriate description of early-time dynamics.

Set of special moments of distribution function

- Non-conformal Boltzmann equation in RTA approx undergoing Bjorken expansion:

$$
\left(\frac{\partial}{\partial \tau}-\frac{p_{z}}{\tau} \frac{\partial}{\partial p_{z}}\right) f(\tau, p)=-\frac{f(\tau, p)-f_{\mathrm{eq}}\left(p_{0} / T\right)}{\tau_{R}(\tau)}
$$

- Consider the moments:

where $\int_{p} \equiv \frac{d^{3} p}{(2 \pi)^{3} p_{0}}$ and $P_{2 n}$ is the Legendre polynomial of order $2 n$.
- Only three moments are hydro quantities: $\left(\mathcal{L}_{0}=\varepsilon, \mathcal{L}_{1}, \mathcal{M}_{0}=T_{\mu}^{\mu}\right)$
- Boltzmann equation can be recast as:

Set of special moments of distribution function

- Non-conformal Boltzmann equation in RTA approx undergoing Bjorken expansion:

$$
\left(\frac{\partial}{\partial \tau}-\frac{p_{z}}{\tau} \frac{\partial}{\partial p_{z}}\right) f(\tau, p)=-\frac{f(\tau, p)-f_{\mathrm{eq}}\left(p_{0} / T\right)}{\tau_{R}(\tau)}
$$

- Consider the moments:

$$
\mathcal{L}_{n} \equiv \int_{p} p_{0}^{2} P_{2 n}\left(p_{z} / p_{0}\right) f(\tau, p), \quad \mathcal{M}_{n} \equiv m^{2} \int_{p} P_{2 n}\left(p_{z} / p_{0}\right) f(\tau, p)
$$

where $\int_{p} \equiv \frac{d^{3} p}{(2 \pi)^{3} p_{0}}$ and $P_{2 n}$ is the Legendre polynomial of order $2 n$.
Blaizot and Yan, PLB 780 (2018) SJ, Blaizot, Bhalerao, Chen, Jaiswal, Yan; PRC 106, 044912 (2022)

- Only three moments are hydro quantities: $\left(\mathcal{L}_{0}=\varepsilon, \mathcal{L}_{1}, \mathcal{M}_{0}=T_{\mu}^{\mu}\right)$
- Boltzmann equation can be recast as:

Set of special moments of distribution function

- Non-conformal Boltzmann equation in RTA approx undergoing Bjorken expansion:

$$
\left(\frac{\partial}{\partial \tau}-\frac{p_{z}}{\tau} \frac{\partial}{\partial p_{z}}\right) f(\tau, p)=-\frac{f(\tau, p)-f_{\mathrm{eq}}\left(p_{0} / T\right)}{\tau_{R}(\tau)}
$$

- Consider the moments:

$$
\mathcal{L}_{n} \equiv \int_{p} p_{0}^{2} P_{2 n}\left(p_{z} / p_{0}\right) f(\tau, p), \quad \mathcal{M}_{n} \equiv m^{2} \int_{p} P_{2 n}\left(p_{z} / p_{0}\right) f(\tau, p)
$$

where $\int_{p} \equiv \frac{d^{3} p}{(2 \pi)^{3} p_{0}}$ and $P_{2 n}$ is the Legendre polynomial of order $2 n$.
Blaizot and Yan, PLB 780 (2018) SJ, Blaizot, Bhalerao, Chen, Jaiswal, Yan; PRC 106, 044912 (2022)

- Only three moments are hydro quantities: $\left(\mathcal{L}_{0}=\varepsilon, \mathcal{L}_{1}, \mathcal{M}_{0}=T_{\mu}^{\mu}\right)$

$$
\epsilon=\mathcal{L}_{0}, \quad P_{L}=P+\Pi-\pi=\frac{1}{3}\left(\mathcal{L}_{0}+2 \mathcal{L}_{1}\right), \quad P_{T}=P+\Pi+\frac{\pi}{2}=\frac{1}{3}\left(\mathcal{L}_{0}-\mathcal{L}_{1}-\frac{3}{2} \mathcal{M}_{0}\right) .
$$

- Boltzmann equation can be recast as:

Set of special moments of distribution function

- Non-conformal Boltzmann equation in RTA approx undergoing Bjorken expansion:

$$
\left(\frac{\partial}{\partial \tau}-\frac{p_{z}}{\tau} \frac{\partial}{\partial p_{z}}\right) f(\tau, p)=-\frac{f(\tau, p)-f_{\mathrm{eq}}\left(p_{0} / T\right)}{\tau_{R}(\tau)}
$$

- Consider the moments:

$$
\mathcal{L}_{n} \equiv \int_{p} p_{0}^{2} P_{2 n}\left(p_{z} / p_{0}\right) f(\tau, p), \quad \mathcal{M}_{n} \equiv m^{2} \int_{p} P_{2 n}\left(p_{z} / p_{0}\right) f(\tau, p)
$$

where $\int_{p} \equiv \frac{d^{3} p}{(2 \pi)^{3} p_{0}}$ and $P_{2 n}$ is the Legendre polynomial of order $2 n$.
Blaizot and Yan, PLB 780 (2018) SJ, Blaizot, Bhalerao, Chen, Jaiswal, Yan; PRC 106, 044912 (2022)

- Only three moments are hydro quantities: $\left(\mathcal{L}_{0}=\varepsilon, \mathcal{L}_{1}, \mathcal{M}_{0}=T_{\mu}^{\mu}\right)$

$$
\epsilon=\mathcal{L}_{0}, \quad P_{L}=P+\Pi-\pi=\frac{1}{3}\left(\mathcal{L}_{0}+2 \mathcal{L}_{1}\right), \quad P_{T}=P+\Pi+\frac{\pi}{2}=\frac{1}{3}\left(\mathcal{L}_{0}-\mathcal{L}_{1}-\frac{3}{2} \mathcal{M}_{0}\right) .
$$

- Boltzmann equation can be recast as:

$$
\begin{aligned}
\frac{\partial \mathcal{L}_{n}}{\partial \tau} & =-\frac{1}{\tau}\left(a_{n} \mathcal{L}_{n}+b_{n} \mathcal{L}_{n-1}+c_{n} \mathcal{L}_{n+1}\right)-\left(1-\delta_{n, 0}\right) \frac{\left(\mathcal{L}_{n}-\mathcal{L}_{n}^{\mathrm{eq}}\right)}{\tau_{R}} \\
\frac{\partial \mathcal{M}_{n}}{\partial \tau} & =-\frac{1}{\tau}\left(a_{n}^{\prime} \mathcal{M}_{n}+b_{n}^{\prime} \mathcal{M}_{n-1}+c_{n}^{\prime} \mathcal{M}_{n+1}\right)-\frac{\left(\mathcal{M}_{n}-\mathcal{M}_{n}^{\mathrm{eq}}\right)}{\tau_{R}}
\end{aligned}
$$

The coefficients $a_{n}, b_{n}, c_{n}, a_{n}^{\prime}, b_{n}^{\prime}, c_{n}^{\prime}$ are pure numbers. Depends on expansion geometry. 8/14

Fixed point structure

- Equation of \mathcal{L}_{n} moments are decoupled from \mathcal{M}_{n} moments \Longrightarrow evolution of energy density $\left(\mathcal{L}_{0}\right)$ does not depend on \mathcal{M}_{n} evolution.
- Consider the quantity: $g_{0} \equiv \frac{\tau}{\mathcal{L}_{0}} \frac{\partial \mathcal{L}_{0}}{\partial \tau}$. In the regimes where the energy density behave as power law, g_{0} is the exponent in that power law.
- Define $\beta\left(g_{0}, w\right) \equiv w \frac{d g_{0}}{d w}$ where $w=\tau / \tau_{R}$. Equation for \mathcal{L}_{n} becomes:
- Zeros of $\beta\left(g_{0}, w\right)$ gives fixed points.
- Free-streaming fixed points ($w \ll 1$)
- Exact fixed point: $g_{0}=-1$ (stable: $\left.P_{L}=0\right)$ and $g_{0}=-2$ (unstable)

Fixed point structure

- Equation of \mathcal{L}_{n} moments are decoupled from \mathcal{M}_{n} moments \Longrightarrow evolution of energy density $\left(\mathcal{L}_{0}\right)$ does not depend on \mathcal{M}_{n} evolution.
- Consider the quantity: $g_{0} \equiv \frac{\tau}{\mathcal{L}_{0}} \frac{\partial \mathcal{L}_{0}}{\partial \tau}$. In the regimes where the energy density behave as power law, g_{0} is the exponent in that power law.
- Define $\beta\left(g_{0}, w\right) \equiv w \frac{\mathrm{~d} g_{0}}{\mathrm{~d} w}$ where $w=\tau / \tau_{R}$. Equation for \mathcal{L}_{n} becomes:

$$
-\beta\left(g_{0}, w\right)=g_{0}^{2}+g_{0}\left(a_{0}+a_{1}+w\right)+a_{0} a_{1}-c_{0} b_{1}+a_{0} w-c_{0} c_{1} \frac{\mathcal{L}_{2}}{\mathcal{L}_{0}}-\frac{c_{0}}{2} w\left(1-3 \frac{P}{\epsilon}\right)
$$

- Zeros of $\beta\left(g_{0}, w\right)$ gives fixed points.
- Free-streaming fixed points $(w \ll 1)$ - Exact fixed point: $g_{0}=-1$ (stable: $P_{L}=0$) and $g_{0}=-2$ (unstable),

Fixed point structure

- Equation of \mathcal{L}_{n} moments are decoupled from \mathcal{M}_{n} moments \Longrightarrow evolution of energy density $\left(\mathcal{L}_{0}\right)$ does not depend on \mathcal{M}_{n} evolution.
- Consider the quantity: $g_{0} \equiv \frac{\tau}{\mathcal{L}_{0}} \frac{\partial \mathcal{L}_{0}}{\partial \tau}$. In the regimes where the energy density behave as power law, g_{0} is the exponent in that power law.
- Define $\beta\left(g_{0}, w\right) \equiv w \frac{\mathrm{~d} g_{0}}{\mathrm{~d} w}$ where $w=\tau / \tau_{R}$. Equation for \mathcal{L}_{n} becomes:

$$
-\beta\left(g_{0}, w\right)=g_{0}^{2}+g_{0}\left(a_{0}+a_{1}+w\right)+a_{0} a_{1}-c_{0} b_{1}+a_{0} w-c_{0} c_{1} \frac{\mathcal{L}_{2}}{\mathcal{L}_{0}}-\frac{c_{0}}{2} w\left(1-3 \frac{P}{\epsilon}\right)
$$

- Zeros of $\beta\left(g_{0}, w\right)$ gives fixed points.
- Free-streaming fixed points $(w \ll 1)$:
- Exact fixed point: $g_{0}=-1$ (stable: $\left.P_{L}=0\right)$ and $g_{0}=-2$ (unstable).

Fixed point structure

- Equation of \mathcal{L}_{n} moments are decoupled from \mathcal{M}_{n} moments \Longrightarrow evolution of energy density $\left(\mathcal{L}_{0}\right)$ does not depend on \mathcal{M}_{n} evolution.
- Consider the quantity: $g_{0} \equiv \frac{\tau}{\mathcal{L}_{0}} \frac{\partial \mathcal{L}_{0}}{\partial \tau}$. In the regimes where the energy density behave as power law, g_{0} is the exponent in that power law.
- Define $\beta\left(g_{0}, w\right) \equiv w \frac{\mathrm{~d} g_{0}}{\mathrm{~d} w}$ where $w=\tau / \tau_{R}$. Equation for \mathcal{L}_{n} becomes:

$$
-\beta\left(g_{0}, w\right)=g_{0}^{2}+g_{0}\left(a_{0}+a_{1}+w\right)+a_{0} a_{1}-c_{0} b_{1}+a_{0} w-c_{0} c_{1} \frac{\mathcal{L}_{\alpha}}{\alpha}-\frac{c_{0}}{2} w\left(1-3 \frac{P}{\epsilon}\right)
$$

- Zeros of $\beta\left(g_{0}, w\right)$ gives fixed points.
- Free-streaming fixed points $(w \ll 1)$:
- Exact fixed point: $g_{0}=-1$ (stable: $P_{L}=0$) and $g_{0}=-2$ (unstable).
- Considering only the two lowest moments:

$$
g_{0}=-0.93 \text { (stable) and } g_{0}=-2.21 \text { (unstable). Captures FP structure. }
$$

Fixed point structure

- Equation of \mathcal{L}_{n} moments are decoupled from \mathcal{M}_{n} moments \Longrightarrow evolution of energy density $\left(\mathcal{L}_{0}\right)$ does not depend on \mathcal{M}_{n} evolution.
- Consider the quantity: $g_{0} \equiv \frac{\tau}{\mathcal{L}_{0}} \frac{\partial \mathcal{L}_{0}}{\partial \tau}$. In the regimes where the energy density behave as power law, g_{0} is the exponent in that power law.
- Define $\beta\left(g_{0}, w\right) \equiv w \frac{\mathrm{~d} g_{0}}{\mathrm{~d} w}$ where $w=\tau / \tau_{R}$. Equation for \mathcal{L}_{n} becomes:

$$
-\beta\left(g_{0}, w\right)=g_{0}^{2}+g_{0}\left(a_{0}+a_{1}+w\right)+a_{0} a_{1}-c_{0} b_{1}+a_{0} w-c_{0} c_{1} \frac{\mathcal{L}_{2}}{\mathcal{L}_{0}}-\frac{c_{0}}{2} w\left(1-3 \frac{P}{\epsilon}\right)
$$

- Zeros of $\beta\left(g_{0}, w\right)$ gives fixed points.
- Free-streaming fixed points $(w \ll 1)$:
- Exact fixed point: $g_{0}=-1$ (stable: $\left.P_{L}=0\right)$ and $g_{0}=-2$ (unstable).
- Considering only the two lowest moments:

$$
g_{0}=-0.93 \text { (stable) and } g_{0}=-2.21 \text { (unstable). Captures FP structure. }
$$

- Hydrodynamic fixed point $(w \gg 1): g_{*}=-1-P / \epsilon$ (governed by EoS).

Three-moment truncation

- Equation of three moments:

$$
\begin{aligned}
\frac{\partial \mathcal{L}_{0}}{\partial \tau} & =-\frac{1}{\tau}\left(a_{0} \mathcal{L}_{0}+c_{0} \mathcal{L}_{1}\right), \quad \frac{\partial \mathcal{L}_{1}}{\partial \tau}=-\frac{1}{\tau}\left(a_{1} \mathcal{L}_{1}+b_{1} \mathcal{L}_{0}+c_{1} \mathcal{L}_{2}\right)-\frac{\left(\mathcal{L}_{1}-\mathcal{L}_{1}^{\mathrm{eq}}\right)}{\tau_{R}} \\
\frac{\partial \mathcal{M}_{0}}{\partial \tau} & =-\frac{1}{\tau}\left(a_{0}^{\prime} \mathcal{M}_{0}+c_{0}^{\prime} \mathcal{M}_{1}\right)-\frac{\left(\mathcal{M}_{0}-\mathcal{M}_{0}^{\mathrm{eq}}\right)}{\tau_{R}}
\end{aligned}
$$

- Different truncation schemes for \mathcal{L}_{2} and \mathcal{M}_{1} leads to variants of ISL theory:

Grad 14-moment truncation and Chapman-Enskog approx. \rightarrow second-order hydro
Denicol et.al., arXiv:1202.4551 (2012); Jaiswal, arXiv:1305.3480 (2013)
Using Romatschke-Strickland form of distribution function \rightarrow anisotropic hydro
Romatschke, Strickland, Martinez, Heinz, Florkowski, Ryblewski, ...
Using maximum entropy distribution \rightarrow ME-hydro

Three-moment truncation

- Equation of three moments:

$$
\begin{aligned}
\frac{\partial \mathcal{L}_{0}}{\partial \tau} & =-\frac{1}{\tau}\left(a_{0} \mathcal{L}_{0}+c_{0} \mathcal{L}_{1}\right), \quad \frac{\partial \mathcal{L}_{1}}{\partial \tau}=-\frac{1}{\tau}\left(a_{1} \mathcal{L}_{1}+b_{1} \mathcal{L}_{0}+c_{1} \mathscr{L}_{2}\right)-\frac{\left(\mathcal{L}_{1}-\mathcal{L}_{1}^{\mathrm{eq}}\right)}{\tau_{R}} \\
\frac{\partial \mathcal{M}_{0}}{\partial \tau} & =-\frac{1}{\tau}\left(a_{0}^{\prime} \mathcal{M}_{0}+c_{0}^{\prime}\right.
\end{aligned}
$$

- Considering three lowest moments $\left(\mathcal{L}_{0}, \mathcal{L}_{1}\right.$ and $\left.\mathcal{M}_{0}\right)$ is enough to approximately capture the exact evolution.

$z=m / T$
Isotropic IC
Constant τ_{R}

Second-order hydrodynamics from moments

- Equation of three moments:

$$
\begin{aligned}
\frac{\partial \mathcal{L}_{0}}{\partial \tau} & =-\frac{1}{\tau}\left(a_{0} \mathcal{L}_{0}+c_{0} \mathcal{L}_{1}\right), \quad \frac{\partial \mathcal{L}_{1}}{\partial \tau}=-\frac{1}{\tau}\left(a_{1} \mathcal{L}_{1}+b_{1} \mathcal{L}_{0}+c_{1} \mathcal{L}_{2}\right)-\frac{\left(\mathcal{L}_{1}-\mathcal{L}_{1}^{\mathrm{eq}}\right)}{\tau_{R}} \\
\frac{\partial \mathcal{M}_{0}}{\partial \tau} & =-\frac{1}{\tau}\left(a_{0}^{\prime} \mathcal{M}_{0}+c_{0}^{\prime} \mathcal{M}_{1}\right)-\frac{\left(\mathcal{M}_{0}-\mathcal{M}_{0}^{\mathrm{eq}}\right)}{\tau_{R}}
\end{aligned}
$$

- Second-order hydro equations is obtained by expanding \mathcal{L}_{2} and \mathcal{M}_{1} till first-order in gradients. However, there are inherent ambiguities in definition of some second-order transport coefficients. SJ, Blaizot, Bhalerao, Chen, Jaiswal, Yan; PRC 106, 044912 (2022). SJ, Blaizot; in prep.
- Relaxation-type structure inherent in moments equations - necessary for causality and extending domain in free-streaming regime.
- Time derivative of \mathcal{L}_{1} and \mathcal{M}_{0}, and correspondingly, $\pi \equiv-\frac{2}{3}\left(\mathcal{L}_{1}+\frac{\mathcal{M}_{0}}{2}\right)$ and $\Pi \equiv\left(\mathcal{L}_{0}-3 P-\mathcal{M}_{0}\right) / 3$ in ISL hydro, captures approximately some of the features of the collisionless regime.

Second-order hydrodynamics from moments

- Equation of three moments:

$$
\begin{aligned}
\frac{\partial \mathcal{L}_{0}}{\partial \tau} & =-\frac{1}{\tau}\left(a_{0} \mathcal{L}_{0}+c_{0} \mathcal{L}_{1}\right), \quad \frac{\partial \mathcal{L}_{1}}{\partial \tau}=-\frac{1}{\tau}\left(a_{1} \mathcal{L}_{1}+b_{1} \mathcal{L}_{0}+c_{1} \mathcal{L}_{2}\right)-\frac{\left(\mathcal{L}_{1}-\mathcal{L}_{1}^{\mathrm{eq}}\right)}{\tau_{R}} \\
\frac{\partial \mathcal{M}_{0}}{\partial \tau} & =-\frac{1}{\tau}\left(a_{0}^{\prime} \mathcal{M}_{0}+c_{0}^{\prime} \mathcal{M}_{1}\right)-\frac{\left(\mathcal{M}_{0}-\mathcal{M}_{0}^{\mathrm{eq}}\right)}{\tau_{R}}
\end{aligned}
$$

- Second-order hydro equations is obtained by expanding \mathcal{L}_{2} and \mathcal{M}_{1} till first-order in gradients. However, there are inherent ambiguities in definition of some second-order transport coefficients. SJ, Blaizot, Bhalerao, Chen, Jaiswal, Yan; PRC 106, 044912 (2022). SJ, Blaizot; in prep.
- Relaxation-type structure inherent in moments equations - necessary for causality and extending domain in free-streaming regime.
- Time derivative of \mathcal{L}_{1} and \mathcal{M}_{0}, and correspondingly, $\pi \equiv-\frac{2}{3}\left(\mathcal{L}_{1}+\frac{\mathcal{M}_{0}}{2}\right)$ and $\Pi \equiv\left(\mathcal{L}_{0}-3 P-\mathcal{M}_{0}\right) / 3$ in ISL hydro, captures approximately some of the features of the collisionless regime.

Second-order hydrodynamics captures free-streaming!

Isotropic initial conditions.

Short free-streaming regime (dotted curves) seen in both the kinetic theory and second-order hydrodynamic. There is nothing typically "hydrodynamic" here;
hydrodynamics becomes a valid description only for times $\tau \gtrsim \tau_{R}$.

Collisionless and near-equilibrium regime in ISL hydro

- "Unreasonable effectiveness of hydrodynamics": The success of ISL hydro in allowing early-time description of matter expansion has nothing to do with near-equilibrium hydrodynamic theory. It results from a subtle property of IS equations that mimic the early time, collisionless, regime.
- Nearly thermalized medium formed at $\tau \lesssim 1 \mathrm{fm} / \mathrm{c}$ (?): Success of such simulations does not imply formation of nearly equilibrated medium at early times.

- "Unreasonable effectiveness of hydrodynamics": The success of ISL hydro in allowing early-time description of matter expansion has nothing to do with near-equilibrium hydrodynamic theory. It results from a subtle property of IS equations that mimic the early time, collisionless, regime.
- Nearly thermalized medium formed at $\tau \lesssim 1 \mathrm{fm} / \mathrm{c}$ (?): Success of such simulations does not imply formation of nearly equilibrated medium at early times.

Extras

Ambiguity of second-order transport coefficients

SJ, Blaizot, Bhalerao, Chen, Jaiswal, Yan; PRC 106, 044912 (2022)

- Equation of \mathcal{L}_{n} moments are decoupled from \mathcal{M}_{n} moments \Longrightarrow evolution of energy density $\left(\mathcal{L}_{0}\right)$ does not depend on \mathcal{M}_{n} evolution.
- Since only $\Pi-\pi=c_{0}\left(\mathcal{L}_{1}-\mathcal{L}_{1}^{\text {eq }}\right)$ enters in evolution of ϵ, similar decoupling in the hydrodynamic equations expected. Such decoupling holds in the ISL hydro iff

$$
\delta_{\Pi \Pi}+\frac{2}{3} \lambda_{\pi \Pi}=\lambda_{\Pi \pi}+\frac{1}{3} \tau_{\pi \pi}+\delta_{\pi \pi}
$$

Not satisfied by transport coefficients derived in A. Jaiswal et. al., PRC 90 (2014) 044908

- New transport coefficients derived following a different truncation for \mathcal{L}_{2} and \mathcal{M}_{1} appearing in the equation for \mathcal{L}_{1} and \mathcal{M}_{0}. Coefficients of the gradient series of Π and π unchanged.

[^0]: :t order hydrodynamics: Navier-Stokes:

 - However, Navier-Stokes eqs. imposes instantaneous response of dissipative fluxes

