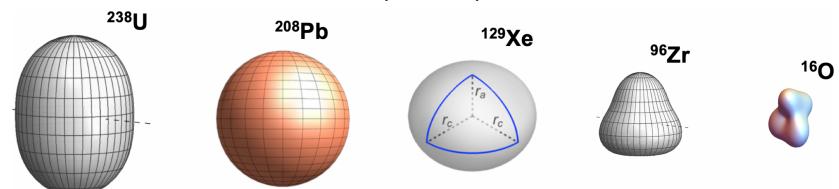


2023 Intersection between nuclear structure and heavy-ion collisions

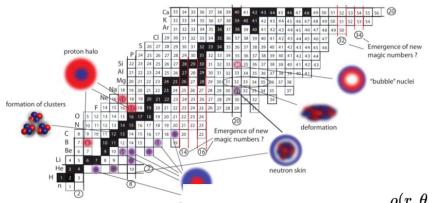
Jiangyong Jia and Giuliano Giacalone

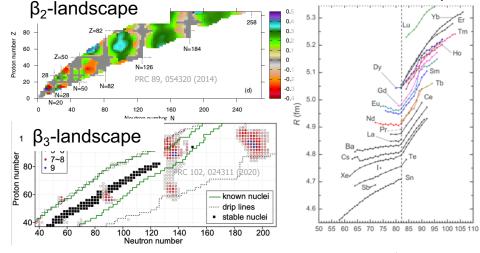
Sept 3 - Sept 9, 2023



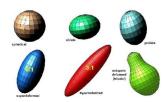
Collective structure of atomic nuclei

- Emergent phenomena of the many-body quantum system
 - clustering, halo, skin, bubble...
 - quadrupole/octupole/hexdecopole deformations
 - Non-monotonic evolution with N and Z

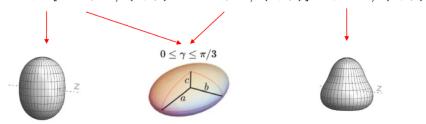




$$ho(r, heta,\phi)=rac{
ho_0}{1+
ho^{(r-R(heta,\phi))/a_0}}$$

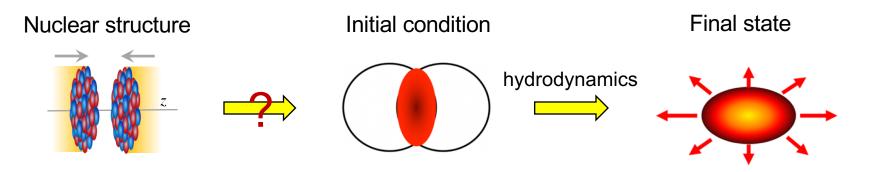


$$R(heta,\phi) = R_0(1+rac{m{eta_2}}{2}[\cos{m{\gamma}}Y_{2,0}(heta,\phi) + \sin{m{\gamma}}Y_{2,2}(heta,\phi)] + rac{m{eta_3}}{2}Y_{3,0}(heta,\phi) + rac{m{eta_4}}{2}Y_{4,0}(heta,\phi))$$



Radii-landscape

Role of nuclear structure in heavy ion collisions



Status

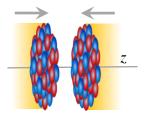
- Precision of QGP properties depends on initial condition and energy deposition
- Detailed nuclear structure information not yet part of hydro framework

Two-fold goal

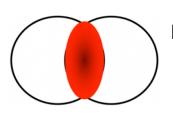
- Constrain the initial condition by comparing nuclei with known structure properties
- Extract properties of nuclei from heavy-ion collisions and compare to low-energy

Role of nuclear structure in heavy ion collisions

Nuclear structure

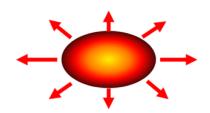


Initial condition



hydrodynamics

Final state



Shape and radial dis.

 $\beta_2 \rightarrow \text{ Quadrupole deformation}$

 $\beta_3 \rightarrow \text{Octupole deformation}$

 $a_0 \rightarrow \text{ Surface diffuseness}$

 $R_0 \rightarrow ext{ Nuclear size}$

Volume, size and shape

 $N_{
m part}$

 $R_\perp^2 \propto \left\langle r_\perp^2
ight
angle$

 $\mathcal{E}_n \propto \left\langle r_\perp^n e^{in\phi}
ight
angle$

Observables

$$rac{d^2N}{d\phi dp_T} = extbf{N}(p_T) \Biggl(\sum_n extbf{V}_{ extbf{n}} \; e^{-in\phi} \Biggr)$$

Anisotropic flow

linear response between initial and final state moments: $V_n \propto \mathcal{E}_n$

 $\propto \mathcal{E}_n$

 $\propto \mathcal{E}_n$ Initial shape

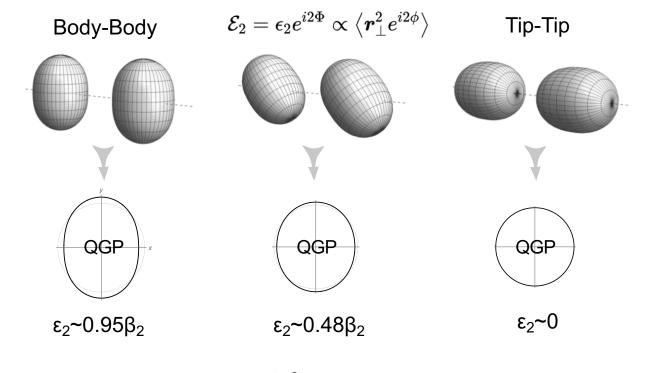
Radial flow

 $\propto -rac{\delta R_{\perp}}{R_{\perp}}$

Initial size

How initial condition is impacted by nuclear structure?

Connecting initial condition to nuclear shape



$$oldsymbol{\epsilon}_2 = \underbrace{oldsymbol{\epsilon}_0}_{ ext{undeformed}} + \underbrace{oldsymbol{p}(\Omega_1,\Omega_2)}_{ ext{phase factor}}eta_2 + \mathcal{O}ig(eta_2^2ig) \qquad igodisplay \qquad ig\langle \epsilon_2^2ig
angle pprox ig\langle \epsilon_0^2ig
angle + 0.2eta_2^2$$

Shape depends on Euler angle $\Omega = \phi \theta \psi$

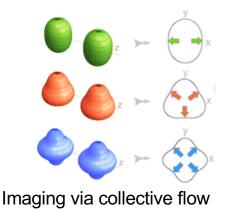
$$\left\langle \epsilon_{2}^{2}
ight
angle pprox\left\langle \epsilon_{0}^{2}
ight
angle$$

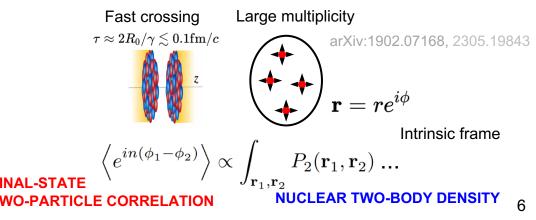
$$\left\langle v_{n}^{2}
ight
angle \propto\left\langle \epsilon_{n}^{2}
ight
angle$$
 . In intrinsic frame

Low-energy vs high-energy method

- Intrinsic frame shape not directly visible in lab frame at time scale $\tau > I/\hbar \sim 10^{-21} s$
- Mainly inferred from largely "non-invasive" spectroscopic methods.

High-energy collisions destructive imaging: probe entire mass distribution in the intrinsic frame via multi-point correlations. Shape frozen in nuclear crossing (10⁻²⁴s << rotational time scale 10⁻²¹s)





Impact of nuclear shape on many-body correlations

$$ho(r, heta,\phi) = rac{
ho_0}{1+
ho^{(r-R(heta,\phi))/a_0}} \quad R(heta,\phi) = R_0(1+rac{oldsymbol{eta_2}}{2}[\cos{oldsymbol{\gamma}}Y_{2,0}(heta,\phi)+\sin{oldsymbol{\gamma}}Y_{2,2}(heta,\phi)] + rac{oldsymbol{eta_3}}{8}Y_{3,0}(heta,\phi)+rac{oldsymbol{eta_4}}{8}Y_{4,0}(heta,\phi))$$

- In principle, can probe any moments of $p(1/R, \varepsilon_2, \varepsilon_3...)$ via $p([p_T], v_2, v_3...)...$
 - Mean $\langle d_{\perp}
 angle \qquad d_{\perp} \equiv 1/R_{\perp}$
 - Variance: $\langle \varepsilon_n^2 \rangle$, $\langle (\delta d_\perp/d_\perp)^2 \rangle$
 - ullet Skewness $\langle arepsilon_n^2 \delta d_\perp/d_\perp
 angle, \, \left\langle (\delta d_\perp/d_\perp)^3
 ight
 angle$
 - $\text{ Kurtosis } \left\langle \varepsilon_n^4 \right\rangle 2 \left\langle \varepsilon_n^2 \right\rangle^2, \left\langle \left(\delta d_\perp / d_\perp \right)^4 \right\rangle 3 \left\langle \left(\delta d_\perp / d_\perp \right)^2 \right\rangle^2 \\ \left\langle v_n^4 \right\rangle 2 \left\langle v_n^2 \right\rangle^2, \left\langle \left(\delta p_\text{T} / p_\text{T} \right)^4 \right\rangle 3 \left\langle \left(\delta p_\text{T} / p_\text{T} \right)^2 \right\rangle^2 \\ \left\langle v_n^4 \right\rangle 2 \left\langle v_n^2 \right\rangle^2, \left\langle \left(\delta p_\text{T} / p_\text{T} \right)^4 \right\rangle 3 \left\langle \left(\delta p_\text{T} / p_\text{T} \right)^2 \right\rangle^2 \\ \left\langle v_n^4 \right\rangle 2 \left\langle v_n^2 \right\rangle^2, \left\langle \left(\delta p_\text{T} / p_\text{T} \right)^4 \right\rangle 3 \left\langle \left(\delta p_\text{T} / p_\text{T} \right)^2 \right\rangle^2 \\ \left\langle v_n^4 \right\rangle 2 \left\langle v_n^2 \right\rangle^2, \left\langle \left(\delta p_\text{T} / p_\text{T} \right)^4 \right\rangle 3 \left\langle \left(\delta p_\text{T} / p_\text{T} \right)^2 \right\rangle^2 \\ \left\langle v_n^4 \right\rangle 2 \left\langle v_n^2 \right\rangle^2, \left\langle \left(\delta p_\text{T} / p_\text{T} \right)^4 \right\rangle 3 \left\langle \left(\delta p_\text{T} / p_\text{T} \right)^2 \right\rangle^2 \\ \left\langle v_n^4 \right\rangle 2 \left\langle v_n^2 \right\rangle^2, \left\langle \left(\delta p_\text{T} / p_\text{T} \right)^4 \right\rangle 3 \left\langle \left(\delta p_\text{T} / p_\text{T} \right)^2 \right\rangle^2 \\ \left\langle v_n^4 \right\rangle 2 \left\langle v_n^2 \right\rangle^2, \left\langle \left(\delta p_\text{T} / p_\text{T} \right)^4 \right\rangle 3 \left\langle \left(\delta p_\text{T} / p_\text{T} \right)^2 \right\rangle^2 \\ \left\langle v_n^4 \right\rangle 2 \left\langle v_n^2 \right\rangle^2, \left\langle \left(\delta p_\text{T} / p_\text{T} \right)^4 \right\rangle 3 \left\langle \left(\delta p_\text{T} / p_\text{T} \right)^2 \right\rangle^2 \\ \left\langle v_n^4 \right\rangle 2 \left\langle v_n^2 \right\rangle^2, \left\langle \left(\delta p_\text{T} / p_\text{T} \right)^4 \right\rangle 3 \left\langle \left(\delta p_\text{T} / p_\text{T} \right)^2 \right\rangle^2 \\ \left\langle v_n^2 \right\rangle 2 \left\langle v_n^2 \right\rangle^2, \left\langle \left(\delta p_\text{T} / p_\text{T} \right)^4 \right\rangle 3 \left\langle \left(\delta p_\text{T} / p_\text{T} \right)^2 \right\rangle^2 \\ \left\langle v_n^2 \right\rangle 2 \left\langle v_n^2 \right\rangle^2, \left\langle \left(\delta p_\text{T} / p_\text{T} \right)^4 \right\rangle 3 \left\langle \left(\delta p_\text{T} / p_\text{T} \right)^2 \right\rangle^2 \\ \left\langle v_n^2 \right\rangle 2 \left\langle v_n^2 \right\rangle^2, \left\langle \left(\delta p_\text{T} / p_\text{T} \right)^4 \right\rangle 3 \left\langle \left(\delta p_\text{T} / p_\text{T} \right)^2 \right\rangle^2 \\ \left\langle v_n^2 \right\rangle 2 \left\langle v_n^2 \right\rangle^2, \left\langle \left(\delta p_\text{T} / p_\text{T} \right)^4 \right\rangle 3 \left\langle \left(\delta p_\text{T} / p_\text{T} \right)^2 \right\rangle^2 \\ \left\langle v_n^2 \right\rangle 2 \left\langle v_n^2 \right\rangle^2, \left\langle \left(\delta p_\text{T} / p_\text{T} \right)^2 \right\rangle^2 \\ \left\langle v_n^2 \right\rangle 2 \left\langle v_n^2 \right\rangle^2, \left\langle \left(\delta p_\text{T} / p_\text{T} \right)^2 \right\rangle 2 \left\langle v_n^2 \right\rangle^2, \left\langle \left(\delta p_\text{T} / p_\text{T} \right)^2 \right\rangle^2 \\ \left\langle v_n^2 \right\rangle 2 \left\langle v_n^2 \right\rangle^2, \left\langle \left(\delta p_\text{T} / p_\text{T} \right)^2 \right\rangle^2 \\ \left\langle v_n^2 \right\rangle 2 \left\langle v_n^2 \right\rangle^2, \left\langle \left(\delta p_\text{T} / p_\text{T} \right)^2 \right\rangle^2 \\ \left\langle v_n^2 \right\rangle 2 \left\langle v_n^2 \right\rangle^2, \left\langle \left(\delta p_\text{T} / p_\text{T} \right)^2 \right\rangle^2 \\ \left\langle v_n^2 \right\rangle 2 \left\langle v_n^2 \right\rangle^2, \left\langle \left(\delta p_\text{T} / p_\text{T} \right)^2 \right\rangle^2 \\ \left\langle v_n^2 \right\rangle 2 \left\langle v_n^2 \right\rangle^2 + 2 \left\langle$

Variances

$$egin{array}{l} \left\langle arepsilon_2^2
ight
angle &\sim a_2 + b_2 eta_2^2 + b_{2,3} eta_3^2 \ \left\langle arepsilon_3^2
ight
angle &\sim a_3 + b_3 eta_3^2 \ \left\langle arepsilon_4^2
ight
angle &\sim a_4 + b_4 eta_4^2 \ \left\langle (\delta d_\perp/d_\perp)^2
ight
angle &\sim a_0 + b_0 eta_2^2 + b_{0,3} eta_3^2 \end{array}$$

$$\left\langle arepsilon_2^2 \delta d_\perp / d_\perp \right\rangle \ \sim a_1 - b_1 \cos(3\gamma) \beta_2^3 \ \left\langle \left(\delta d_\perp / d_\perp \right)^3 \right\rangle \ \sim a_2 + b_2 \cos(3\gamma) \beta_2^3$$

 $\left\langle v_n^2 \right
angle, \, \left\langle \left(\delta p_{
m T}/p_{
m T}
ight)^2
ight
angle$

 $\langle v_n^2
angle, \left\langle (\delta p_{
m T}/p_{
m T})^2
ight
angle \ \left\langle v_n^2 \delta p_{
m T}/p_{
m T}
angle, \left\langle (\delta p_{
m T}/p_{
m T})^3
ight
angle$

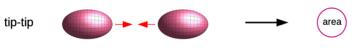
Example: Probing the nuclear three-body density (triaxiality)

Prolate

$$eta_2=0.25,\cos(3\gamma)=1$$

$R(\theta,\phi) = R_0 \left(1 + \beta_2 \left[\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2} \right] \right)$

G. Giuliano et.al 1910.04673, 2004.14463



large v₂

small [pt]

large area

 N_{ch}^{rec} (lηl<0.5)

 $v_2 \nearrow p_T \searrow$

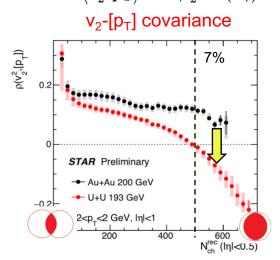
Triaxial

$$eta_2=0.25,\cos(3\gamma)=0$$

Oblate

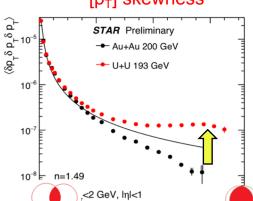
$$eta_2=0.25,\cos(3\gamma)=-1$$

Need 3-point correlators to probe the 3 axes



 $ig\langle v_2^2 \delta p_{
m T} ig
angle \sim -eta_2^3 \cos(3\gamma) \qquad ig\langle (\delta p_{
m T})^3 ig
angle \sim eta_2^3 \cos(3\gamma)$

[p_T] skewness



arXiv: 2109.00604

Compare U+U vs Au+Au:

 $\beta_{2U} \sim 0.28$, $\beta_{2AU} \sim 0.13$:

Strategy for nuclear shape imaging

Flow observable = K

⊗ initial condition (structure)

QGP response, a smooth function of N+Z

Structure of colliding nuclei, non-monotonic function of N and Z

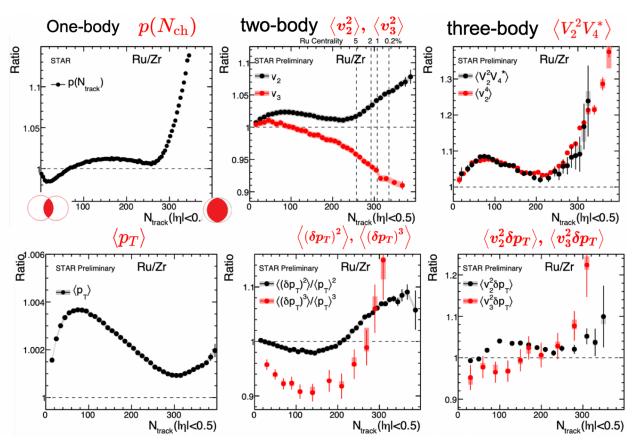
Compare two systems of similar size but different structure

$$R_{\mathcal{O}} \equiv \frac{\mathcal{O}_{\text{Ru}}}{\mathcal{O}_{\text{Zr}}} \approx 1 + c_1 \Delta \beta_2^2 + c_2 \Delta \beta_3^2 + c_3 \Delta R_0 + c_4 \Delta a$$
 arXiv: 2111.15559

Deviation from unity depends only on their structure differences c₁-c₄ are function of centrality

Isobar ⁹⁶Ru+⁹⁶Ru and ⁹⁶Zr+⁹⁶Zr collisions at RHIC 200 GeV

QM2022 poster, Chunjian Zhang

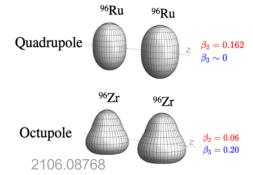


$$R_{\mathcal{O}} \equiv \frac{\mathcal{O}_{\mathrm{Ru}}}{\mathcal{O}_{\mathrm{Zr}}}$$

Structure influences everywhere

Nuclear structure is inherently part of Heavy ion problem

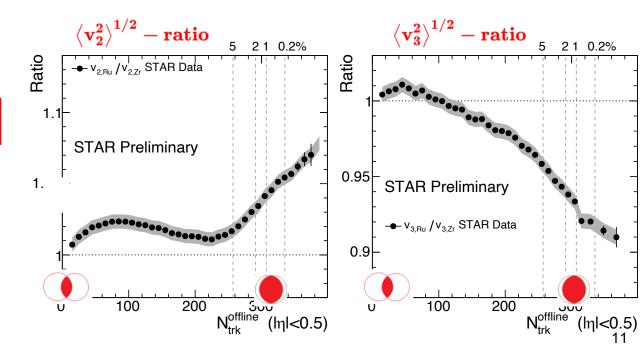
Nuclear structure via v₂-ratio and v₃-ratio



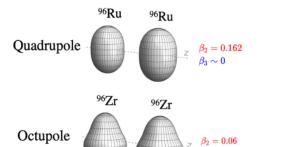
Species	β_2	β_3	a_0	R_0 5.09 fm		
Ru	0.162	0	$0.46~\mathrm{fm}$			
Zr	0.06	0.20	$0.52~\mathrm{fm}$	$5.02~\mathrm{fm}$		
difference	$\Delta \beta_2^2$	$\Delta \beta_3^2$	Δa_0	ΔR_0		
difference	0.0226	-0.04	-0.06 fm	$0.07~\mathrm{fm}$		

$$R_{\mathcal{O}} \equiv \frac{\mathcal{O}_{\mathrm{Ru}}}{\mathcal{O}_{\mathrm{Zr}}} \approx 1 + c_1 \Delta \beta_2^2 + c_2 \Delta \beta_3^2 + c_3 \Delta R_0 + c_4 \Delta a$$
 2109.00131

Simultaneously constrain four structure parameters



Nuclear structure via v₂-ratio and v₃-ratio



r	96 Zr		
	Z	$\beta_2 = 0.06$ $\beta_3 = 0.20$	

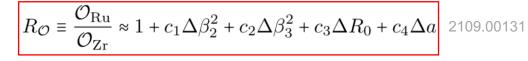
Species	β_2	eta_3	a_0	R_0		
Ru	0.162	0	$0.46~\mathrm{fm}$	5.09 fm		
Zr	0.06	0.20	$0.52~\mathrm{fm}$	$5.02~\mathrm{fm}$		
difference	$\Delta \beta_2^2$	$\Delta \beta_3^2$	Δa_0	ΔR_0		
difference	0.0226	-0.04	-0.06 fm	$0.07~\mathrm{fm}$		

- $\beta_{2Ru} \sim 0.16$ increase v_2 , no influence on v_3 ratio
- $\beta_{37r} \sim 0.2$ decrease v_2 and v_3 ratio

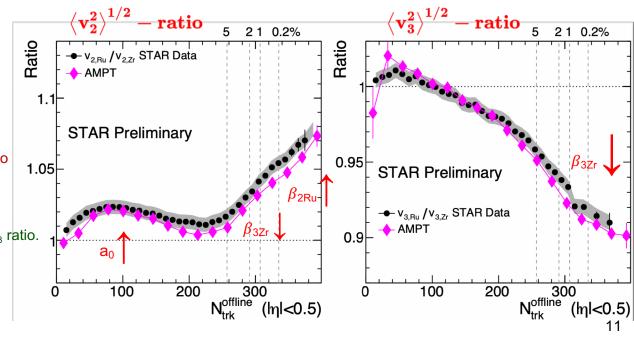
2106.08768

- $\Delta a_0 = -0.06$ fm increase v_2 mid-central,
- Radius $\Delta R_0 = 0.07$ fm slightly affects v_2 and v_3 ratio.

Is ⁹⁶Zr octupole deformed?

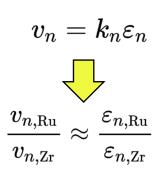


Simultaneously constrain four structure parameters

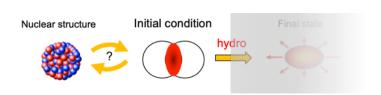


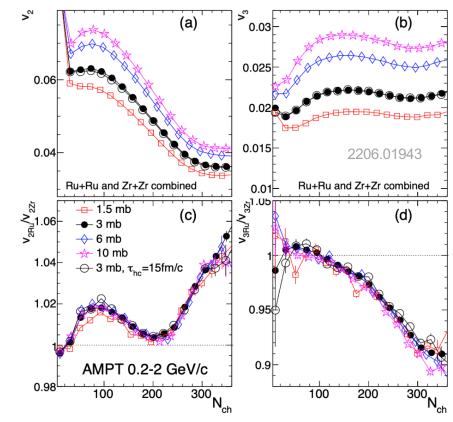
Isobar ratios cancel final state effects

- Vary the shear viscosity by changing partonic cross-section in AMPT
 - Flow signal change by 30-50%, the v_n ratio unchanged.



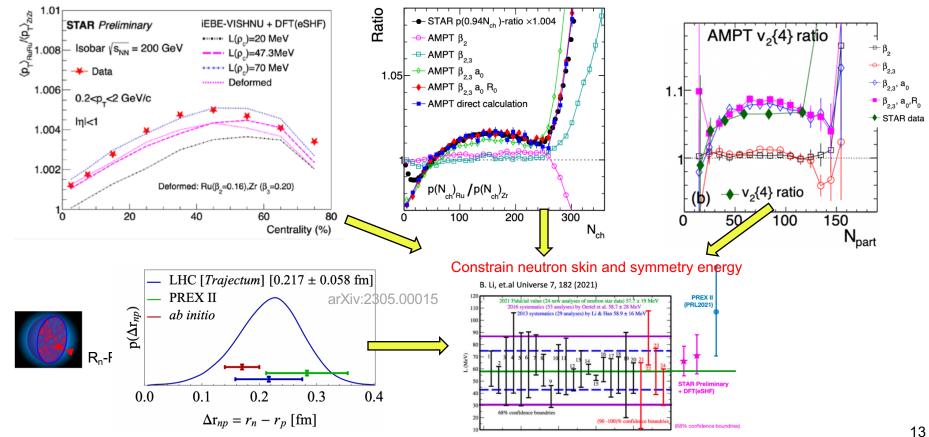
Robust probe of initial state!



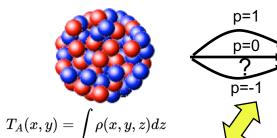


Imaging the radial structures → neutron skin

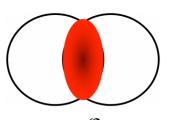
Radial parameters R_0 , a_0 are properties of one-body distribution $\rightarrow \langle p_T \rangle$, $\langle N_{ch} \rangle$, $v_2^{RP} \sim v_2 \langle 4 \rangle$, σ_{tot}



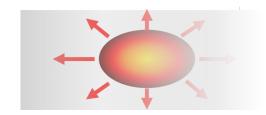
Constrain the heavy-ion initial condition



Initial condition



Final state



$$\frac{\mathcal{O}_{\mathrm{Ru}}}{\mathcal{O}_{\mathrm{Zr}}} \approx 1 + c_1 \Delta \beta_2^2 + c_2 \Delta \beta_3^2 + c_3 \Delta R_0 + c_4 \Delta a$$

hydro

c_n relates nuclear structure and initial condition

Different ways of depositing energy $T \propto \left(\frac{T_A^p + T_B^p}{2}\right)^{q/p}$

$$T \propto \left(rac{T_A^p + T_B^p}{2}
ight)^{q/p}$$

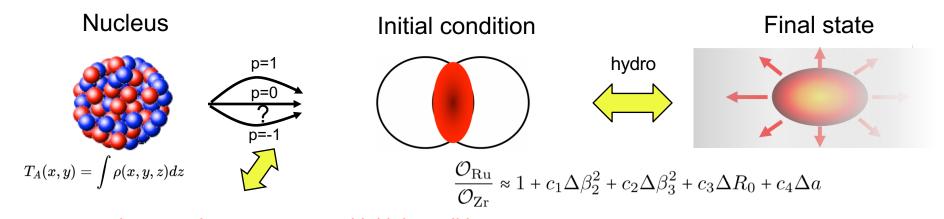
$$e(x,y) \sim egin{cases} T_A + T_B & N_{ ext{part}} - ext{scaling}, p = 1 \ T_A T_B & N_{ ext{coll}} - ext{scaling}, p = 0, q = 2 \ \sqrt{T_A T_B} & ext{Trento default}, p = 0 \ \min\{T_A, T_B\} & ext{KLN model}, p \sim -2/3 \ T_A + T_B + lpha T_A T_B & ext{two-component model}, \ & ext{similar to quark-glauber model} \end{cases}$$

$$N_{
m part}-{
m scaling}, p=1 \ N_{
m coll}-{
m scaling}, p=0, q=2 \ {
m Trento default}, p=0 \ {
m KLN model}, p\sim -2/3 \ {
m two-component model}, \ {
m similar to quark-glauber model}$$

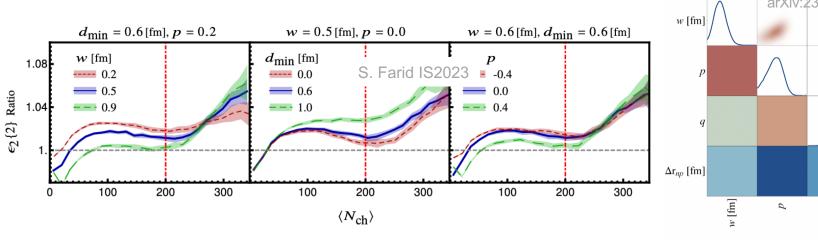
Other parameters:

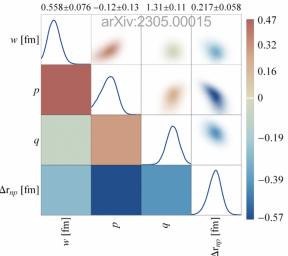
Nucleon width, w Minimum distance, d_{min}. Fluctuation parameter, σ_{fluc}

Constrain the heavy-ion initial condition

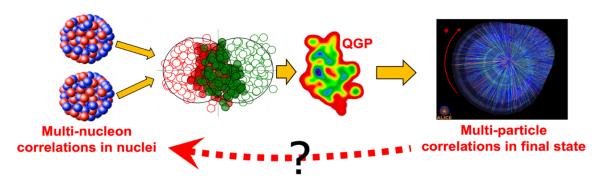


c_n relates nuclear structure and initial condition





Opportunities at the intersection of nuclear structure and hot QCD



Many examples in https://arxiv.org/abs/2209.11042

- III. Science cases at the intersection of nuclear structure and hot QCD
 - A. Stress-testing small system collectivity with ²⁰Ne
 - B. Shape evolution along the Samarium isotopic chain
 - C. The neutron skin of ⁴⁸Ca and ²⁰⁸Pb in high-energy collisions
 - D. Initial conditions of heavy-ion collisions

See recent INT program 23-1A

E. Impact on future experiments: EIC and CBM FAIR

.

New tests of effective field theories of low-energy QCD!

Summary and outlook

- High-energy collisions image nuclear shape at ultra-short time scale of 10⁻²⁴s; Large particle multiplicity enables many-particle correlation event-by-event to probe many-nucleon correlations in nuclei.
- Collisions of carefully-selected isobar species (at LHC) can reveal the many-body nucleon correlations & constrain the heavy ion initial condition from small to large nuclei

2102.08158

A	isobars	A	isobars	A	isobars	A	isobars	A	isobars	A	isobars
36	Ar, S	80	Se, Kr	106	Pd, Cd	124	Sn, Te, Xe	148	Nd, Sm	174	Yb, Hf
40	Ca, Ar	84	Kr, Sr, Mo	108	Pd, Cd	126	Te, Xe	150	Nd, Sm	176	Yb, Lu, Hf
46	Ca, Ti	86	Kr, Sr	110	Pd, Cd	128	Te, Xe	152	Sm, Gd	180	Hf, W
48	Ca, Ti	87	Rb, Sr	112	Cd, Sn	130	Te, Xe, Ba	154	Sm, Gd	184	W, Os
50	Ti, V, Cr	92	Zr, Nb, Mo	113	Cd, In	132	Xe, Ba	156	Gd,Dy	186	W, Os
54	Cr, Fe	94	Zr, Mo	114	Cd, Sn	134	Xe, Ba	158	Gd,Dy	187	Re, Os
64	Ni, Zn	96	Zr, Mo, Ru	115	In, Sn	136	Xe, Ba, Ce	160	Gd,Dy	190	Os, Pt
70	Zn, Ge	98	Mo, Ru	116	Cd, Sn	138	Ba, La, Ce	162	Dy,Er	192	Os, Pt
74	Ge, Se	100	Mo, Ru	120	Sn, Te	142	Ce, Nd	164	Dy,Er	196	Pt, Hg
76	Ge, Se	102	Ru, Pd	122	Sn, Te	144	Nd, Sm	168	Er,Yb	198	Pt, Hg
78	Se, Kr	104	Ru, Pd	123	Sb, Te	146	Nd, Sm	170	Er,Yb	204	Hg, Pb

Recently organized activities:

RBRC workshop Jan 2022, link

EMMI Taskforce May&Oct 2022, link

ESNT workshop Sep 2022, link

INT program Jan-Feb2023 link

Dalian workshop Aug 2023 <u>link</u>

Beijing workshop April 2024, in preparation

.. 16