Quarkonium transport in weakly and strongly coupled plasmas

30th International Conference on Ultra-relativistic Nucleus-Nucleus Collisions, Houston TX, United States of America September 6, 2023

Bruno Scheihing-Hitschfeld (MIT) based on 2107.03945, 2205.04477, 2304.03298, 2306.13127, 2309.XXXXX

$$
M \gg M v \gg M v^{2}
$$

Quarkonium in medium

M : heavy quark mass v : typical relative speed

$$
M \gg M v \gg M v^{2}
$$

Quarkonium in medium

M : heavy quark mass v : typical relative speed

$$
M \gg M v \gg M v^{2}
$$

"unbound" state
M : heavy quark mass v : typical relative speed
color singlet;
"bound" state

Quarkonium in medium

$Q: c$ or b quark $\bar{Q}: \bar{c}$ or \bar{b} quark

$$
M \gg M v \gg M v^{2}
$$

Quarkonium in medium

M : heavy quark mass v : typical relative speed

Q

$$
M \gg M v \gg M v^{2}
$$

Quarkonium in medium

M : heavy quark mass v : typical relative speed

At high T, quarkonium "melts" because the medium screens the interactions between heavy quarks (Matsui \& Satz 1986)

$$
Q \bar{Q} \text { melts if } r \sim \frac{1}{M v} \gg \frac{1}{T}
$$

color octet;
"unbound" state

$$
M \gg M v \gg M v^{2}
$$

$Q: c$ or b quark $\bar{Q}: \bar{c}$ or \bar{b} quark

Quarkonium in medium

"unbound" state
M : heavy quark mass v : typical relative speed

Q

$$
M \gg M v \gg M v^{2}
$$

Quarkonium in medium

$Q: c$ or b quark $\bar{Q}: \bar{c}$ or \bar{b} quark

$$
M \gg M v \gg M v^{2}
$$

Quarkonium in medium

M : heavy quark mass v : typical relative speed

$$
M \gg M v \gg M v^{2}
$$

Quarkonium in medium

M : heavy quark mass v : typical relative speed
$Q: c$ or b quark $\bar{Q}: \bar{c}$ or \bar{b} quark

Quarkonium as an open quantum system

Transitions between quarkonium energy levels
(the system)

$$
\begin{aligned}
\mathscr{L}_{\text {pNRQCD }}=\mathscr{L}_{\text {light quarks }}+\mathscr{L}_{\text {gluon }}+\int d^{3} r \operatorname{Tr}_{\text {color }} & {\left[S^{\dagger}\left(i \partial_{0}-H_{s}\right) S+O^{\dagger}\left(i D_{0}-H_{o}\right) O\right.} \\
& \left.+V_{3}\left(O^{\dagger} \mathbf{r} \cdot g \mathbf{E} S+\text { h.c. }\right)+\frac{V_{B}}{2} O^{\dagger}\{\mathbf{r} \cdot g \mathbf{E}, O\}+\cdots\right]
\end{aligned}
$$

Quarkonium as an open quantum system

Transitions between quarkonium energy levels
(the system)

$$
\begin{aligned}
\mathscr{L}_{\text {pNRQCD }}=\mathscr{L}_{\text {light quarks }}+\mathscr{L}_{\text {gluon }}+\int d^{3} r \operatorname{Tr}_{\text {color }} & {\left[S^{\dagger}\left(i \partial_{0}-H_{s}\right) S+O^{\dagger}\left(i D_{0}-H_{o}\right) O\right.} \\
& \left.+V_{A}\left(O^{\dagger} \mathbf{r} \cdot g \mathbf{E} S+\text { h.c. }\right)+\frac{V_{B}}{2} O^{\dagger}\{\mathbf{r} \cdot g \mathbf{E}, O\}+\cdots\right]
\end{aligned}
$$

Quarkonium as an open quantum system

Transitions between quarkonium energy levels
(the system)

Interaction with the environment

$$
\frac{1}{\tau_{I}} \sim \frac{H_{\mathrm{int}}^{2}}{T} \sim T \frac{T^{2}}{(M v)^{2}}
$$

QGP

(the environment)

$$
\begin{aligned}
\mathscr{L}_{\text {pNRQCD }}=\mathscr{L}_{\text {light quarks }}+\mathscr{L}_{\text {gluon }}+\int d^{3} r \operatorname{Tr}_{\text {color }} & {\left[S^{\dagger}\left(i \partial_{0}-H_{s}\right) S+O^{\dagger}\left(i D_{0}-H_{o}\right) O\right.} \\
& \left.+V_{A}\left(O^{\dagger} \mathbf{r} \cdot g \mathbf{E} S+\text { h.c. }\right)+\frac{V_{B}}{2} O^{\dagger}\{\mathbf{r} \cdot g \mathbf{E}, O\}+\cdots\right]
\end{aligned}
$$

Quarkonium as an open quantum system

Transitions between quarkonium energy levels
(the system)

Interaction with the environment

QGP
(the environment)

$$
\begin{aligned}
\mathscr{L}_{\text {pNRQCD }}=\mathscr{L}_{\text {light quarks }}+\mathscr{L}_{\text {gluon }}
\end{aligned}+\int d^{3} r \operatorname{Tr}_{\text {color }}\left[S^{\dagger}\left(i \partial_{0}-H_{s}\right) S+O^{\dagger}\left(i D_{0}-H_{o}\right) O,{ }^{\mathcal{E}}\right)
$$

How does the QGP enter the dynamics?

QGP chromoelectric correlators

for quarkonia transport

$$
\left.\left[g_{E}^{-}-\right]_{i_{i 1} i}^{-(t, ~}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(\mathscr{V}_{2} E_{i_{i}}\left(\mathbf{R}_{2}, t_{2}\right)\right)^{a}\left(E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right) \mathscr{V}_{1}\right)^{a}\right\rangle_{T}
$$

$$
\left(R_{1},-\infty\right) \quad\left(R_{2},-\infty\right)
$$

$$
\left[g_{E}^{++}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right) \mathscr{W}_{2}\right)^{a}\left(\mathscr{W}_{1} E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right)\right)_{5}^{a}\right\rangle_{T}
$$

QGP chromoelectric correlators

for quarkonia transport

"bound" state: color singlet

$$
\left[g_{E}^{++}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right) \mathscr{W}_{2}\right)^{a}\left(\mathscr{W}_{1} E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right)\right)_{5}^{a}\right\rangle_{T}
$$

QGP chromoelectric correlators

for quarkonia transport

$$
\left[g_{E}^{++}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right) \mathscr{W}_{2}\right)^{a}\left(\mathscr{W}_{1} E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right)\right)_{5}^{a}\right\rangle_{T}
$$

QGP chromoelectric correlators

for quarkonia transport

6880
088
C88

R
the "unbound" state carries color charge and interacts with the medium
"unbound" state: color octet
medium-induced transition
"bound" state: color singlet

$$
\left[g_{E}^{++}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right) \mathscr{W}_{2}\right)^{a}\left(\mathscr{W}_{1} E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right)\right)_{5}^{a}\right\rangle_{T}
$$

QGP chromoelectric correlators

for quarkonia transport

6180
088 Clex octet $Q \bar{Q}$ path generates a Wilson line: $\mathscr{W}_{\left[t_{2}, t_{1}\right]}^{a b}=\left[\operatorname{Pexp}\left(i g \int_{t_{1}}^{t_{2}} d t A_{0}^{c}(t) T_{\text {adj }}^{c}\right)\right]$ $]^{a b}$
the "unbound" state carries color charge and interacts with the medium
"unbound" state: color octet
medium-induced transition
"bound" state: color singlet

$$
\left[g_{E}^{++}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right) \mathscr{W}_{2}\right)^{a}\left(\mathscr{W}_{1} E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right)\right)_{5}^{a}\right\rangle_{T}
$$

QGP chromoelectric correlators

for quarkonia transport

6180
088 688
the "unbound" state carries color charge and interacts with the medium
"unbound" state: color octet
medium-induced transition
"bound" state: color singlet

$$
\left[g_{E}^{++}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right) \mathscr{W}_{2}\right)^{a}\left(\mathscr{W}_{1} F_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right)\right)_{5}^{a}\right\rangle_{T}
$$

QGP chromoelectric correlators

for quarkonia transport

$$
\left[g_{E}^{++}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right) \mathscr{W}_{2}\right)^{a}\left(\mathscr{W}_{1} E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right)\right)_{5}^{a}\right\rangle_{T}
$$

QGP chromoelectric correlators

for quarkonia transport

"bound" state: color singlet

"unbound" state: color octet
the "unbound" state carries color charge and interacts with the

$$
\left[g_{E}^{--}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(\mathscr{W}_{2^{\prime}} E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right)\right)^{a}\left(E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right) \mathscr{W}_{1^{\prime}}\right)^{a}\right\rangle_{T}
$$

"bound" state:
color singlet

Why are these correlators interesting?

Quarkonium in the quantum brownian motion limit

 $M v \gg T \gg M v^{2}$ (Brambilla et al.)$$
\frac{d \rho_{S}(t)}{d t}=-i\left[H_{S}+\Delta H_{S}, \rho_{S}(t)\right]+\kappa_{\mathrm{adj}}\left(L_{\alpha i} \rho_{S}(t) L_{\alpha i}^{\dagger}-\frac{1}{2}\left\{L_{\alpha i}^{\dagger} L_{\alpha i}, \rho_{S}(t)\right\}\right)
$$

The correlators determine the transport coefficients:

$$
\begin{aligned}
& \gamma_{\mathrm{adj}} \equiv \frac{g^{2}}{6 N_{c}} \operatorname{Im} \int_{-\infty}^{\infty} d s\left\langle\mathscr{T} E^{a, i}(s, \mathbf{0}) \mathscr{W}^{a b}[(s, \mathbf{0}),(0, \mathbf{0})] E^{b, i}(0, \mathbf{0})\right\rangle, \\
& \kappa_{\mathrm{adj}} \equiv \frac{g^{2}}{6 N_{c}} \operatorname{Re} \int_{-\infty}^{\infty} d s\left\langle\mathscr{T} E^{a, i}(s, \mathbf{0}) \mathscr{W}^{a b}[(s, \mathbf{0}),(0, \mathbf{0})] E^{b, i}(0, \mathbf{0})\right\rangle .
\end{aligned}
$$

Quarkonium in the quantum optical limit

Semiclassical approximation

+ $M v \gg M v^{2}, T$ (Yao et al.)

$$
\frac{d n_{b}(t, \mathbf{x})}{d t}=-\Gamma^{\mathrm{diss}} n_{b}(t, \mathbf{x})+R^{\text {form }}(t, \mathbf{x})
$$

These correlators determine the dissociation and formation rates of quarkonia:

$$
\begin{aligned}
& \left.\Gamma^{\text {diss }} \propto \int \frac{\mathrm{d}^{3} \mathbf{p}_{\mathrm{rel}}}{(2 \pi)^{3}} \frac{\mathrm{~d}^{3} \mathbf{q}}{(2 \pi)^{3}}\left|\left\langle\psi_{\mathscr{B}}\right| \mathbf{r}\right| \Psi_{\mathbf{p}_{\text {rel }}}\right\rangle\left.\right|^{2}\left[g_{E}^{++}\right]_{i i}^{>}\left(q^{0}=E_{\mathscr{B}}-\frac{\mathbf{p}_{\text {rel }}^{2}}{M}, \mathbf{q}\right), \\
& \left.R^{\text {form }}(t, \mathbf{x}) \propto \int \frac{\mathrm{d}^{3} \mathbf{p}_{\mathrm{cm}}}{(2 \pi)^{3}} \frac{\mathrm{~d}^{3} \mathbf{p}_{\mathrm{rel}}}{(2 \pi)^{3}} \frac{\mathrm{~d}^{3} \mathbf{q}}{(2 \pi)^{3}}\left|\left\langle\psi_{\mathscr{B}}\right| \mathbf{r}\right| \Psi_{\mathbf{p}_{\text {rel }}}\right\rangle\left.\right|^{2}\left[g_{E}^{--}\right]_{i i}^{>}\left(q^{0}=\frac{\mathbf{p}_{\text {rel }}^{2}}{M}-E_{\mathscr{B}}, \mathbf{q}\right) \\
& \times f_{\mathcal{S}}\left(\mathbf{x}, \mathbf{p}_{\mathrm{cm}}, \mathbf{r}=0, \mathbf{p}_{\mathrm{rel}}, t\right) \text {. }
\end{aligned}
$$

A comparison with heavy quark diffusion

Different physics with the same building blocks

Heavy quark diffusion

an analogous picture

J. Casalderrey-Solana and D. Teaney, hep-ph/0605199

- The heavy quark diffusion coefficient is also defined from a correlation of chromoelectric fields:

$$
\begin{aligned}
& \left\langle\operatorname { T r } \left[\left(U_{[\infty, t]} E_{i}(t) U_{[t,-\infty)}\right)^{\dagger}\right.\right. \\
& \left.\left.\quad \times\left(U_{[\infty, 0]} E_{i}(0) U_{[0,-\infty)}\right)\right]\right\rangle
\end{aligned}
$$

- It reflects the typical momentum transfer $\left\langle p^{2}\right\rangle$ received from "kicks" from the medium.

Heavy quark diffusion

an analogous picture

J. Casalderrey-Solana and D. Teaney, hep-ph/0605199

- The heavy quark diffusion coefficient is also defined from a correlation of chromoelectric fields:

$$
\begin{aligned}
& \left\langle\operatorname { T r } \left[\left(U_{[\infty, t]} E_{i}(t) U_{[t,-\infty)}\right)^{\dagger}\right.\right. \\
& \left.\left.\quad \times\left(U_{[\infty, 0]} E_{i}(0) U_{[0,-\infty)}\right)\right]\right\rangle
\end{aligned}
$$

- It reflects the typical momentum transfer $\left\langle p^{2}\right\rangle$ received from "kicks" from the medium.
the heavy quark carries color charge and interacts with the medium

Heavy quark diffusion

an analogous picture

J. Casalderrey-Solana and D. Teaney, hep-ph/0605199

- The heavy quark diffusion coefficient is also defined from a correlation of chromoelectric fields:

$$
\begin{aligned}
& \left\langle\operatorname { T r } \left[\left(U_{[\infty, t]} E_{i}(t) U_{[t,-\infty)}\right)^{\dagger}\right.\right. \\
& \left.\left.\quad \times\left(U_{[\infty, 0]} E_{i}(0) U_{[0,-\infty)}\right)\right]\right\rangle
\end{aligned}
$$

- It reflects the typical momentum transfer $\left\langle p^{2}\right\rangle$ received from "kicks" from the medium.

Heavy quark diffusion

an analogous picture

J. Casalderrey-Solana and D. Teaney, hep-ph/0605199

- The heavy quark diffusion coefficient is also defined from a correlation of chromoelectric fields:

$$
\begin{aligned}
& \left\langle\operatorname { T r } \left[\left(U_{[\infty, t]} E_{i}(t) U_{[t,-\infty}\right)^{\dagger}\right.\right. \\
& \left.\left.\quad \times\left(U_{[\infty, 0]} E_{i}(0) U_{[0,-\infty)}\right]\right\rangle\right\rangle
\end{aligned}
$$

- It reflects the typical momentum transfer $\left\langle p^{2}\right\rangle$ received from "kicks" from the medium.

Heavy quark and quarkonia correlators

a small, yet consequential difference

The heavy quark diffusion coefficient can be defined from the real-time

$$
\left\langle\operatorname{Tr}_{\text {color }}\left[U(-\infty, t) E_{i}(t) U(t, 0) E_{i}(0) U(0,-\infty)\right]\right\rangle_{T},
$$

whereas for quarkonia the relevant quantity is $\left(\mathbf{R}_{1}=\mathbf{R}_{2}\right.$ in the preceding discussion)

$$
T_{F}\left\langle E_{i}^{a}(t) \mathscr{W}^{a b}(t, 0) E_{i}^{b}(0)\right\rangle_{T} .
$$

The difference in pQCD

operator ordering is crucial!

Perturbatively, one can isolate the difference between the correlators to these diagrams.
$\Delta \rho(\omega)=\frac{g^{4} N_{c}^{2} C_{F} T_{F}}{4 \pi}|\omega|^{3}$

The difference in pQCD

 operator ordering is crucial!

Perturbatively, one can isolate the difference between the correlators to these diagrams.

$$
\Delta \rho(\omega)=\frac{g^{4} N_{c}^{2} C_{F} T_{F}}{4 \pi}|\omega|^{3}
$$

The difference is due to different operator orderings (different possible gluon insertions).

The difference in pQCD

 operator ordering is crucial!
E

Perturbatively, one can isolate the difference between the correlators to these diagrams.

$$
\Delta \rho(\omega)=\frac{g^{4} N_{c}^{2} C_{F} T_{F}}{4 \pi}|\omega|^{3}
$$

The difference is due to different operator orderings (different possible gluon insertions).

The difference in pQCD

Gauge invariant!

 operator ordering is crucial!

Perturbatively, one can isolate the difference between the correlators to these diagrams.

$$
\Delta \rho(\omega)=\frac{g^{4} N_{c}^{2} C_{F} T_{F}}{4 \pi}|\omega|^{3}
$$

The difference is due to different operator orderings (different possible gluon insertions).

Can we calculate this difference non-perturbatively in QCD?

A Lattice QCD perspective

heavy quark diffusion

- The heavy quark diffusion coefficient has been studied by evaluating the following correlation function (e.g., Altenkort et al. 2009.13553, 2302.08501; Leino et al. 2212.10941):

$$
G_{\text {fund }}(\tau)=-\frac{1}{3} \frac{\left\langle\operatorname{ReTr}_{c}\left[U(\beta, \tau) g E_{i}(\tau) U(\tau, 0) g E_{i}(0)\right]\right\rangle}{\left\langle\operatorname{ReTr}_{c}[U(\beta, 0)]\right\rangle}
$$

- The heavy quark diffusion coefficient is extracted by reconstructing the corresponding spectral function (Caron-Huot et al. 0901.1195):

$$
G_{\text {fund }}(\tau)=\int_{0}^{+\infty} \frac{d \omega}{2 \pi} \frac{\cosh \left(\omega\left(\tau-\frac{1}{2 T}\right)\right)}{\sinh \left(\frac{\omega}{2 T}\right)} \rho_{\text {fund }}(\omega), \quad \kappa_{\text {fund }}=\lim _{\omega \rightarrow 0} \frac{T}{\omega} \rho_{\text {fund }}(\omega)
$$

A Lattice QCD perspective

quarkonium transport (hep-ph/2306.13127 w/ X. Yao)

- The quarkonium correlator in imaginary time has received less attention:

$$
G_{\mathrm{adj}}(\tau)=\frac{T_{F} g^{2}}{3 N_{c}}\left\langle E_{i}^{a}(\tau) \mathscr{W}^{a b}(\tau, 0) E_{i}^{b}(0)\right\rangle
$$

- The transport coefficients can also be extracted by spectral reconstruction:

$$
G_{\mathrm{adj}}(\tau)=\int_{-\infty}^{+\infty} \frac{\mathrm{d} \omega}{2 \pi} \frac{\exp \left(\omega\left(\frac{1}{2 T}-\tau\right)\right)}{2 \sinh \left(\frac{\omega}{2 T}\right)} \rho_{\mathrm{adj}}^{++}(\omega), \quad \kappa_{\mathrm{adj}}=\lim _{\omega \rightarrow 0} \frac{T}{2 \omega}\left[\rho_{\mathrm{adj}}^{++}(\omega)-\rho_{\mathrm{adj}}^{++}(-\omega)\right]
$$

- Main new ingredient: the spectral function $\rho_{\text {adj }}^{++}(\omega)$ is not odd under $\omega \rightarrow-\omega$, because $G_{\mathrm{adj}}(\tau)$ is not invariant under $\tau \rightarrow 1 / T-\tau$.

In summary, we have:

\square Understood the weakly coupled limit in QCD, and 2107.03945, 2205.04477
V formulated how to extract the transport coefficients in lattice QCD. 2306.13127

However, the QGP is strongly coupled.

- Pending a lattice QCD determination, is there anything else we can learn at strong coupling?

Yes! Using holography, we can:
U Understand the strong coupling in $\mathcal{N}=4$ SYM, and
2304.03298

- calculate its velocity dependence. 2309.XXXXX

Results in $\mathcal{N}=4$ SYM at strong coupling

novel calculation in 2304.03298 with G . Nijs and X. Yao

$$
\kappa_{\mathrm{adj}}^{\mathcal{N}=4}+i \gamma_{\mathrm{adj}}^{\mathcal{N}=4} \equiv \frac{g^{2}}{6 N_{c}} \int_{-\infty}^{\infty} d s\left\langle\mathscr{T} E^{a, i}(s) \mathscr{W}_{[s, 0]}^{a b} b^{b, i}(0)\right\rangle=0
$$

Results in $\mathcal{N}=4$ SYM at strong coupling

 novel calculation in 2304.03298 with G. Nijs and X. Yao

$$
\kappa_{\mathrm{adj}}^{\mathcal{N}=4}+i \gamma_{\mathrm{adj}}^{\mathcal{N}=4} \equiv \frac{g^{2}}{6 N_{c}} \int_{-\infty}^{\infty} d s\left\langle\mathscr{T} E^{a, i}(s) \mathscr{W}_{[s, 0]}^{a b} E^{b, i}(0)\right\rangle=0
$$

Velocity dependence of quarkonia transport rates in AdS/CFT 2309.xxxxx (w/G. Nijs and X. Yao)

$$
t_{\mathrm{QGP}}=t_{Q \bar{Q}}
$$

```
    E
    \mathscr{W}
    E
```

$$
x_{\perp, \mathrm{QGP}}=x_{\perp, Q \bar{Q}}
$$

Velocity dependence of quarkonia transport rates in AdS/CFT 2309.xxxxX (w/G. Nijs and X. Yao)

v : relative velocity between the rest frames of the QGP and the $Q \bar{Q}$ pair

$$
x_{\perp, \mathrm{QGP}}=x_{\perp, Q \bar{Q}}
$$

Velocity dependence of quarkonia transport rates in AdS/CFT 2309.xxxxX (w/G. Nijs and X. Yao)

Result:

The correlator has the same form as in the $v=0$ case, with

$$
T_{\mathrm{eff}, Q \bar{Q}}=\sqrt{\gamma} T_{\mathrm{QGP}},
$$

Velocity dependence of quarkonia transport rates in AdS/CFT 2309.xxxxX (w/G. Nijs and X. Yao)

Result:

The correlator has the same form as in the $v=0$ case, with $T_{\mathrm{eff}, Q \bar{Q}}=\sqrt{\gamma} T_{\mathrm{QGP}}$, where $\gamma=1 / \sqrt{1-v^{2}}$.

v : relative velocity between the rest frames of

Same temperature dependence as the
$Q \bar{Q}$ potential in the same "hot wind" setup hep-ph/0612168

A flavor of what we can do

 23XX.XXXXX (w/ X. Yao)We can now evolve a state of a heavy quark-antiquark pair, taking into account:

IV Their wavefunction evolution using a potential model, allowing for different initial separations σ_{0} between the pair.
\square Their transition rates via the correlator we just discussed.

Summary and conclusions

- We have discussed how to calculate the chromoelectric correlators of the QGP that govern quarkonium transport.
- Interesting prospects for interpolating between weak \& strong coupling, and describing non-perturbative QGP physics.
- Next steps (as of Hard Probes 2023):
\square Generalize the calculations to include a boosted medium.
\square Calculate the chromo-magnetic correlators $\left\langle B^{a}(t) \mathscr{W}_{[t, 0]}^{a b} B^{b}(0)\right\rangle_{T}$.
\square Use them as input for quarkonia transport codes.
- Stay tuned!

Summary and conclusions

- We have discussed how to calculate the chromoelectric correlators of the QGP that govern quarkonium transport.
- Interesting prospects for interpolating between weak \& strong coupling, and describing non-perturbative QGP physics.
- Next steps (as of Quark Matter 2023):
(-) Generalize the calculations to include a boosted medium.
\square Calculate the chromo-magnetic correlators $\left\langle B^{a}(t) \mathscr{V}_{[t, 0]}^{a b} B^{b}(0)\right\rangle_{T}$.
- Use them as input for quarkonia transport codes.
- Stay tuned!

Summary and conclusions

- We have discussed how to calculate the chromoelectric correlators of the QGP that govern quarkonium transport.
- Interesting prospects for interpolating between weak \& strong coupling, and describing non-perturbative QGP physics.
- Next steps (as of Quark Matter 2023):
(-) Generalize the calculations to include a boosted medium.
\square Calculate the chromo-magnetic correlators $\left\langle B^{a}(t) \mathscr{V}_{[t, 0]}^{a b} B^{b}(0)\right\rangle_{T}$.
- Use them as input for quarkonia transport codes.
- Stay tuned!

Extra slides

Time scales of quarkonia

Transitions between quarkonium energy levels
(the system)

$$
\begin{aligned}
\mathscr{L}_{\text {pNRQCD }}=\mathscr{L}_{\text {light quarks }}+\mathscr{L}_{\text {gluon }}+\int d^{3} r \operatorname{Tr}_{\text {color }} & {\left[S^{\dagger}\left(i \partial_{0}-H_{s}\right) S+O^{\dagger}\left(i D_{0}-H_{o}\right) O\right.} \\
& \left.+{ }_{23} V_{A}\left(O^{\dagger} \mathbf{r} \cdot g \mathbf{E} S+\text { h.c. }\right)+\frac{V_{B}}{2} O^{\dagger}\{\mathbf{r} \cdot g \mathbf{E}, O\}+\cdots\right]
\end{aligned}
$$

Open quantum systems "tracing/integrating out" the QGP

- Given an initial density matrix $\rho_{\text {tot }}(t=0)$, quarkonium coupled with the QGP evolves as

$$
\rho_{\mathrm{tot}}(t)=U(t) \rho_{\mathrm{tot}}(t=0) U^{\dagger}(t)
$$

- We will only be interested in describing the evolution of quarkonium and its final state abundances

$$
\Longrightarrow \rho_{S}(t)=\operatorname{Tr}_{\mathrm{QGP}}\left[U(t) \rho_{\mathrm{tot}}(t=0) U^{\dagger}(t)\right]
$$

- Then, one derives an evolution equation for $\rho_{S}(t)$, assuming that at the initial time we have $\rho_{\mathrm{tot}}(t=0)=\rho_{S}(t=0) \otimes e^{-H_{\mathrm{QGP}} / T} / \mathscr{L}_{\mathrm{QGP}}$.

Open quantum systems

"tracing/integrating out" the QGP: semi-classic description

Lindblad equations for quarkonia at low $T \ll M v$ quantum Brownian motion limit \& quantum optical limit in pNRQCD

- After tracing out the QGP degrees of freedom, one gets a Lindblad-type equation:

$$
\frac{\partial \rho}{\partial t}=-i\left[H_{\mathrm{eff}}, \rho\right]+\sum_{j} \gamma_{j}\left(L_{j} \rho L_{j}^{\dagger}-\frac{1}{2}\left\{L_{j}^{\dagger} L_{j}, \rho\right\}\right)
$$

- This can be done in two different limits within pNRQCD:

Quantum Brownian Motion:
see works by

$$
\begin{array}{r}
\tau_{I} \gg \tau_{E} \\
\tau_{S} \gg \tau_{E}
\end{array}
$$

relevant for $M v \gg T \gg M v^{2}$

Quantum Optical:

$$
\begin{aligned}
& \tau_{I} \gg \tau_{E} \\
& \tau_{I} \gg \tau_{S}
\end{aligned}
$$

relevant for $M v \gg M v^{2}, T$

Quantum Brownian Motion limit details

$$
\left.\begin{array}{c}
\frac{d \rho_{S}(t)}{d t}=-i\left[H_{S}+\Delta H_{S}, \rho_{S}(t)\right]+\kappa_{\mathrm{adj}}\left(L_{\alpha i} \rho_{S}(t) L_{\alpha i}^{\dagger}-\frac{1}{2}\left\{L_{\alpha i}^{\dagger} L_{\alpha i}, \rho_{S}(t)\right\}\right) \\
H_{S}=\frac{\mathbf{p}_{\mathrm{rel}}^{2}}{M}+\left(\begin{array}{cc}
-\frac{C_{F} \alpha_{s}}{r} & 0 \\
0 & \frac{\alpha_{s}}{2 N_{c} r}
\end{array}\right), \quad \Delta H_{S}=\frac{\gamma_{\mathrm{adj}}}{2} r^{2}\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{N_{c}^{2}-2}{2\left(N_{c}^{2}-1\right)}
\end{array}\right) \\
L_{1 i}
\end{array}\right)=\left(r_{i}+\frac{1}{2 M T} \nabla_{i}-\frac{N_{c}}{8 T} \frac{\alpha_{s} r_{i}}{r}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
$$

Heavy quark and quarkonia correlators

a small, yet consequential difference

A. M. Eller, J. Ghiglieri and G. D. Moore, hep-ph/1903.08064

What we just found, and had been noticed even earlier by Eller, Ghiglieri and Moore, is simply stating that:
Y. Burnier, M. Laine, J. Langelage and L. Mether, hep-ph/1006.0867

$$
T_{F}\left\langle E_{i}^{a}(t) \mathscr{W}^{a b}(t, 0) E_{i}^{b}(0)\right\rangle_{T} \neq\left\langle\operatorname{Tr}_{\text {color }}\left[U(-\infty, t) E_{i}(t) U(t, 0) E_{i}(0) U(0,-\infty)\right]\right\rangle_{T}
$$

An axial gauge puzzle an apparent (but not actual) inconsistency

- This finding presents a puzzle:
- Let's say we were able to set axial gauge $A_{0}=0$.
- Then, the two correlation functions would look the same:

$$
T_{F}\left\langle E_{i}^{a}(t) E_{i}^{a}(0)\right\rangle_{T}=\left\langle\operatorname{Tr}_{\text {color }}\left[E_{i}(t) E_{i}(0)\right]\right\rangle_{T}
$$

- If true, this would imply that:
A. one of the calculations is wrong, or
B. one of the correlators is not garuge invariant.

An axial gauge puzzle an apparent (but not actual) inconsistency

- This finding presents a puzzle:
- Let's say we were able to set axial gauge $A_{0}=0$.
- Then, the two correlation functions would look the same:

$$
T_{F}\left\langle E_{i}^{a}(t) E_{i}^{a}(0)\right\rangle_{T}=\left\langle\operatorname{Tr}_{\text {color }}\left[E_{i}(t) E_{i}(0)\right]\right\rangle_{T}
$$

- If true, this would imply that:
A. one of the calculations is wrong, or

Unlikely: we verified this independently
B. one of the correlators is not gazuge invariant.

An axial gauge puzzle an apparent (but not actual) inconsistency

- This finding presents a puzzle:
- Let's say we were able to set axial gauge $A_{0}=0$.
- Then, the two correlation functions would look the same:

$$
T_{F}\left\langle E_{i}^{a}(t) E_{i}^{a}(0)\right\rangle_{T}=\left\langle\operatorname{Tr}_{\text {color }}\left[E_{i}(t) E_{i}(0)\right]\right\rangle_{T}
$$

- If true, this would imply that:
A. one of the calculations is wrong, or

Unlikely: we verified this independently
B. one of the correlators is not gauge invariant.

False: both definitions are explicitly invariant

An axial gauge puzzle an apparent (but not actual) inconsistency

- This finding presents a puzzle:
- Let's say we were able to set axial gauge $A_{0}=0 . \Longrightarrow$ The problem is here
- Then, the two correlation functions would look the same:

$$
T_{F}\left\langle E_{i}^{a}(t) E_{i}^{a}(0)\right\rangle_{T}=\left\langle\operatorname{Tr}_{\text {color }}\left[E_{i}(t) E_{i}(0)\right]\right\rangle_{T}
$$

o If true, this would imply that:
A. one of the calculations is wrong, or

Unlikely: we verified this independently
B. one of the correlators is not gauge invariant. \qquad False: both definitions are explicitly invariant

BS and X. Yao, hep-ph/2205.04477

An axial gauge puzzle an apparent (but not actual) incons

We verified that this difference between
the correlators is gauge invariant using an interpolating gauge condition:

$$
G_{M}^{a}[A]=\frac{1}{\lambda} A_{0}^{a}(x)+\partial^{\mu} A_{\mu}^{a}(x)
$$

- This finding presents a puzzle:
- Let's say we were able to set axial gauge $A_{0}=0 . \Longrightarrow$ The problem is here
- Then, the two correlation functions would look the same:

$$
T_{F}\left\langle E_{i}^{a}(t) E_{i}^{a}(0)\right\rangle_{T}=\left\langle\operatorname{Tr}_{\text {color }}\left[E_{i}(t) E_{i}(0)\right]\right\rangle_{T}
$$

o If true, this would imply that:
A. one of the calculations is wrong, or
B. one of the correlators is not gauge invariant. \qquad False: both definitions are explicitly invariant

Wilson loops in AdS/CFT

setup

- The holographic duality provides a way to formulate the calculation of analogous correlators in strongly coupled theories. [$\left.{ }^{* *}\right]$
- Wilson loops can be evaluated by solving classical equations of motion:

$$
\langle W[\mathscr{C}=\partial \Sigma]\rangle_{T}=e^{i S_{\mathrm{NC}}[\Sigma]}
$$

How do Wilson loops help?

setup - pure gauge theory

- Field strength insertions along a Wilson loop can be generated by taking variations of the path \mathscr{C} :
$\left.\frac{\delta}{\delta f^{\mu}\left(s_{2}\right)} \frac{\delta}{\delta f^{\nu}\left(s_{1}\right)} W\left[\mathscr{C}_{f}\right]\right|_{f=0}=(i g)^{2} \operatorname{Tr}_{\text {color }}\left[U_{\left[1, s_{2}\right]} F_{\mu \rho}\left(\gamma\left(s_{2}\right)\right) \dot{\gamma}^{\rho}\left(s_{2}\right) U_{\left[s_{2}, s_{1}\right]} F_{\nu \sigma}\left(\gamma\left(s_{1}\right)\right) \dot{\gamma}^{\sigma}\left(s_{1}\right) U_{\left[s_{1}, 0\right]}\right]$

How do Wilson loops help?

setup - pure gauge theory

- Field strength insertions along a Wilson loop can be generated by taking variations of the path \mathscr{C} :
$\left.\frac{\delta}{\delta f^{\mu}\left(s_{2}\right)} \frac{\delta}{\delta f^{\nu}\left(s_{1}\right)} W\left[\mathscr{C}_{f}\right]\right|_{f=0}=(i g)^{2} \operatorname{Tr}_{\text {color }}\left[U_{\left[1, s_{2}\right]} F_{\mu \rho}\left(\gamma\left(s_{2}\right)\right) \dot{\gamma}^{\rho}\left(s_{2}\right) U_{\left[s_{2}, s_{1}\right]} F_{\nu \sigma}\left(\gamma\left(s_{1}\right)\right) \dot{\gamma}^{\sigma}\left(s_{1}\right) U_{\left[s_{1}, 0\right]}\right]$
- Same as the lattice calculation of the heavy quark diffusion coefficient:

Wilson loops in AdS/CFT

setup

- The holographic duality provides a way to formulate the calculation of analogous correlators in strongly coupled theories. [**]
- Wilson loops can be evaluated by solving classical equations of motion:

$$
\langle W[\mathscr{C}=\partial \Sigma]\rangle_{T}=e^{i S_{\mathrm{NG}}[\Sigma]}
$$

Metric of interest for finite T calculations:

$$
d s^{2}=\frac{R^{2}}{z^{2}}\left[-f(z) d t^{2}+d \mathbf{x}^{2}+\frac{1}{f(z)} d z^{2}+z^{2} d \Omega_{5}^{2}\right]
$$

$$
f(z)=1-(\pi T z)^{4}
$$

Wilson loops in $\mathcal{N}=4$ SYM

a slightly different observable

- A holographic dual in terms of an extremal surface exists for

$$
W_{\mathrm{BPS}}[\mathscr{C} ; \hat{n}]=\frac{1}{N_{c}} \operatorname{Tr}_{\text {color }}\left[\mathscr{P} \exp \left(i g \oint_{\mathscr{C}} d s T^{a}\left[A_{\mu}^{a} \dot{x}^{\mu}+\hat{n}(s) \cdot \overrightarrow{\phi^{a}} \sqrt{\dot{x}^{2}}\right]\right)\right]
$$

which is not the standard Wilson loop.

Wilson loops in $\mathcal{N}=4$ SYM

a slightly different observable

- A holographic dual in terms of an extremal surface exists for

$$
W_{\mathrm{BPS}}[\mathscr{C} ; \hat{n}]=\frac{1}{N_{c}} \operatorname{Tr}_{\text {color }}\left[\mathscr{P} \exp \left(i g \oint_{\mathscr{C}} d s T^{a}\left[A_{\mu}^{a} \dot{x}^{\mu}+\hat{n}(s) \cdot \overrightarrow{\phi^{a}} \sqrt{\dot{x}^{2}}\right]\right)\right]
$$

which is not the standard Wilson loop.

- $\mathcal{N}=4$ SYM has 6 scalar fields $\vec{\phi}^{a}$, which enter the above Wilson loop through a direction $\hat{n} \in S_{5}$. Also, its dual gravitational description is $\mathrm{AdS}_{5} \times \mathrm{S}_{5}$.

Wilson loops in $\mathcal{N}=4$ SYM

a slightly different observable

- A holographic dual in terms of an extremal surface exists for

$$
W_{\mathrm{BPS}}[\mathscr{C} ; \hat{n}]=\frac{1}{N_{c}} \operatorname{Tr}_{\text {color }}\left[\mathscr{P} \exp \left(i g \oint_{\mathscr{C}} d s T^{a}\left[A_{\mu}^{a} \dot{x}^{\mu}+\hat{n}(s) \cdot \overrightarrow{\phi^{a}} \sqrt{\dot{x}^{2}}\right]\right)\right]
$$

which is not the standard Wilson loop.

- $\mathcal{N}=4$ SYM has 6 scalar fields $\overrightarrow{\phi^{a}}$, which enter the above Wilson loop through a direction $\hat{n} \in S_{5}$. Also, its dual gravitational description is $\mathrm{AdS}_{5} \times \mathrm{S}_{5}$.
- What to do with this extra parameter? For a single heavy quark, just set $\hat{n}=\hat{n}_{0}$.

Choosing \hat{n}

what is the best proxy for an adjoint Wilson line?

- A key property of the adjoint Wilson line is

$$
\mathscr{W}_{\left[t_{2}, t_{1}\right]}^{a b}=\frac{1}{T_{F}} \operatorname{Tr}\left[\mathscr{T}\left\{T^{a} U_{\left[t_{2}, t_{1}\right]} T^{b} U_{\left[t_{2}, t_{1}\right]}^{\dagger}\right\}\right],
$$

which means that we can obtain the correlator we want by studying deformations of a Wilson loop of the form $W=\frac{1}{N_{c}} \operatorname{Tr}\left[U U^{\dagger}\right]=1$.

- This leads us to consider the following loop:

$$
\hat{n}=\hat{n}_{0}
$$

$$
\hat{n}=-\hat{n}_{0}
$$

The Schwinger-Keldysh contour

 quarkonia and heavy quarks

The Schwinger-Keldysh contour

 quarkonia and heavy quarks

 quarkonia and heavy quarks}

- The heavy quark is present at all times:
- It is part of the construction of the thermal state.
- The Wilson line, which enforces the Gauss' law constraint due to the point charge, is also present on the Euclidean segment.

The Schwinger-Keldysh contour

quarkonia and heavy quarks

$$
\operatorname{Re}\{t\}
$$

- In this correlator, the heavy quark pair is present at all times, but it is only color-charged for a finite time:
- It is not part of the construction of the thermal state.
- The adjoint Wilson line, representing the propagation of unbound quarkonium (in the adjoint representation), is only present on the real-time segment.

Review: Heavy Quark Diffusion in AdS/CFT

 using the same computational techniqueSteps of the calculation:

1. Find the appropriate background solution

AdS/Schwarzschild black hole
time-ordered branch of SK
Σ
 SK contour

Review: Heavy Quark Diffusion in AdS/CFT

 using the same computational techniqueSteps of the calculation:

1. Find the appropriate background solution
2. Introduce perturbations

AdS/Schwarzschild black hole
time-ordered branch of SK
Σ
 SK contour

Review: Heavy Quark Diffusion in AdS/CFT

 using the same computational techniqueSteps of the calculation:

1. Find the appropriate background solution
2. Introduce perturbations
3. Evaluate the deformed Wilson loop and take derivatives

 contour
 SK contour

Review: Heavy Quark Diffusion in AdS/CFT

 using the same computational techniqueSteps of the calculation:

1. Find the appropriate background solution
2. Introduce perturbations
3. Evaluate the deformed Wilson loop and take derivatives
From here: $\kappa=\pi \sqrt{g^{2} N_{c}} T^{3}$
 SK contour

Quarkonium correlator in AdS/CFT

a very similar picture

- Same steps as before:

1. Find background solution
2. Introduce perturbations
3. Evaluate the derivatives

- Differences:
- Boundary conditions
- Time-ordered correlator; not retarded

SK contour and Holography

Heavy quark correlator

$$
\xrightarrow{\operatorname{Im}\{t\}} \operatorname{Re}\{t\}
$$

Fluctuations are matched through the imaginary time segment solving the equations of motion \Longrightarrow factors of $e^{\beta \omega}, \mathrm{KMS}$ relations \downarrow_{z}

SK contour and Holography

Heavy quark correlator

$$
\xrightarrow{\operatorname{Im}\{t\}}
$$

Fluctuations are matched through the imaginary time segment solving the equations of motion \Longrightarrow factors of $e^{\beta \omega}, \mathrm{KMS}$ relations \downarrow_{z}

$$
t=t_{i}
$$

$$
t=t_{i}-i \beta
$$

$$
\text { From here: } \kappa=\pi \sqrt{g^{2} N_{c}} T^{3}
$$

SK contour and Holography

Quarkonium correlator

Fluctuations are matched at the turnaround points of the extremal surface. No direct sensitivity to the imaginary time segment.

sure No direc sensivity to

$$
t=t_{i}
$$

$$
\hat{n}=-\hat{n}_{0}
$$

How the calculation proceeds

what equations do we need to solve?

- The classical, unperturbed equations of motion from the Nambu-Goto action to determine Σ :

$$
S_{\mathrm{NG}}=-\frac{1}{2 \pi \alpha^{\prime}} \int d \tau d \sigma \sqrt{-\operatorname{det}\left(g_{\mu \nu} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu}\right)} .
$$

- The classical, linearized equation of motion with perturbations in order to be able to calculate derivatives of $\left\langle W\left[\mathscr{C}_{f}\right]\right\rangle_{T}=e^{i S_{\mathrm{NG}}\left[\Sigma_{f}\right]}$:

$$
S_{\mathrm{NG}}\left[\Sigma_{f}\right]=S_{\mathrm{NG}}[\Sigma]+\left.\int d t_{1} d t_{2} \frac{\delta^{2} S_{\mathrm{NG}}\left[\Sigma_{f}\right]}{\delta f\left(t_{1}\right) \delta f\left(t_{2}\right)}\right|_{f=0} f\left(t_{1}\right) f\left(t_{2}\right)+O\left(f^{3}\right)
$$

- In practice, the equations are only numerically stable in Euclidean signature, so we have to solve them and analytically continue back.

QGP chromoelectric correlators

for quarkonia transport

$$
\left[g_{E}^{++}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right) \mathscr{W}_{2}\right)^{a}\left(\mathscr{W}_{1} E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right)\right)_{4_{2}}^{a}\right\rangle_{T}
$$

The spectral function of quarkonia

symmetries and KMS relations

The KMS conjugates of the previous correlators are such that

$$
\left[g_{E}^{++}\right]_{j i}^{>}(q)=e^{q^{0} / T}\left[g_{E}^{++}\right]_{j i}^{<}(q), \quad\left[g_{E}^{--}\right]_{j i}^{>}(q)=e^{q^{0} / T}\left[g_{E}^{--}\right]_{j i}^{<}(q),
$$

and one can show that they are related by

$$
\left[g_{E}^{++}\right]_{j i}^{>}(q)=\left[g_{E}^{--}\right]_{j i}^{<}(-q), \quad\left[g_{E}^{--}\right]_{j i}^{>}(q)=\left[g_{E}^{++}\right]_{j i}^{<}(-q) .
$$

The spectral functions $\left[\rho_{E}^{++/--}\right]_{j i}(q)=\left[g_{E}^{++/--}\right]_{j i}^{>}(q)-\left[g_{E}^{++/--}\right]_{j i}^{<}(q)$ are not necessarily odd under $q \leftrightarrow-q$. However, they do satisfy:

$$
\left[\rho_{E}^{++}\right]_{j i}(q)=-\left[\rho_{E}^{--}\right]_{j i}(-q) .
$$

