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M > My > My?

M: heavy quark mass
v: typical relative speed

Quarkonium in medium

t At high /, quarkonium “melts” |

because the medium screens the

| interactions between heavy |
quarks (Matsui & Satz 1986)
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— most of quarkonium

i starts to form when My > T color octet;

Q: c or b quark “unbound” state

O: ¢ or b quark 2
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M: heavy quark mass
v: typical relative speed

Quarkonium in medium

%), ¢

color singlet;
“bound” state
| —> We need to
| understand the above
dynamics in the hierarchy
Mv>T
—> pNRQCD [*] .

) [] N. Brambilla, A. Pineda, J. Soto. A. Vairo
v hep-ph/9907240, hep-ph/0410047
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Quarkonium as an open quantum system

Transitions between

. Interaction with the
quarkonium energy levels
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How does the QGP enter the
dynamics?



See also: N. Brambilla et al. hep-ph/1612.07248, hep-ph/1711.04515, hep-ph/2205.10289 X. Yao and T. Mehen, hep-ph/2009.02408
T. Binder, K. Mukaida, B. Scheihing-Hitschfeld, X. Yao, hep-ph/2107.03945
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Why are these correlators
interesting?



Quarkonium in the quantum brownian motion limit
Mv > T > Mv? (Brambilla et al.)
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A comparison with heavy quark
diffusion

Different physics with the same building blocks



Heavy quark diffusion

an analogous picture

J. Casalderrey-Solana and D. Teaney, hep-ph/0605199
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 The heavy quark diffusion
coefficient Is also defined from a
correlation of chromoelectric fields:

<TI‘ [(U[oo,t]Ei(t) U[t,—oo])df
X (Ujoo,01EA(O)U [(),—oo])] )

* |t reflects the typical momentum

transfer (p?) received from
*kicks” from the medium.

heavy quark
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Heavy quark diffusion : R

an analogous picture r, (@D quark carries

- color charge

and interacts
with the
medium

J. Casalderrey-Solana and D. Teaney, hep-ph/0605199

 The heavy quark diffusion
coefficient Is also defined from a
correlation of chromoelectric fields:
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“kick” from the
QGP: momentum
transfer Is effected
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Heavy quark and quarkonia correlators

a small, yet consequential difference

The heavy quark diffusion coefficient can be defined from the real-time

correlator . Casalderrey-Solana and D. Teaney, hep-ph/0605199; see also A. M. Eller, J. Ghiglieri and G. D. Moore, hep-ph/1903.08064
< troror | U(= 00, DEDU(LO)E(0)U(O, — 00) >

whereas for quarkonia the relevant quantity is (R; = R, in the preceding
discussion)

Tr ( EXOW"(1,0)EP(0) ) .
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see also A. M. Eller, J. Ghiglieri and G. D. Moore, hep-ph/1903.08064

The difference in pQCD

operator ordering is crucial!

1 00 Perturbatively, one

can isolate the
difference between
the correlators to
these diagrams.

() ‘N2C,.T
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Y @, :

I O g
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possible gluon
insertions).
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Can we calculate this difference
non-perturbatively in QCD?



A Lattice QCD perspective

heavy quark diffusion

 The heavy quark diffusion coefficient has been studied by evaluating the
following correlation function (e.g., Altenkort et al. 2009.13553, 2302.08501;
Leino et al. 2212.10941):

1 (ReTr [U(B, 1) gE(7) U(z,0) gEA0)] )
3 (ReTr [U(B,0)]) |

 The heavy quark diffusion coefficient is extracted by reconstructing the
corresponding spectral function (Caron-Huot et al. 0901.1195):

Gfund(T) — =

too 1., cosh(a)(f —— )

Gung(7) = J _.—a)ZTpfund(a)) , Kfgng = 1M —pp (@) .
0 AT smh(ﬁ) w—0
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A Lattice QCD perspective
quarkonium transport (hep-ph/2306.13127 w/ X. Yao)

* [he quarkonium correlator in Iimaginary time has received less attention:

I8 -
3N.

* The transport coefficients can also be extracted by spectral reconstruction:

G4i(7) = (EXD)W*(7,0)E[(0) ) .

T
P @) gy = lim —— | k(@) - plif(~w)]|.

G.i(0) rm do (057 = 7)) |
" o 27 2sinh(2)

. Main new ingredient: the spectral function patl;“(a)) is not odd under
@w — — , because G,4;(7) is not invariant under 7 — 1/7 — 7.
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In summary, we have:

M Understood the weakly coupled
limit in QCD, and 2107.03945, 2205.04477

™ formulated how to extract the

transport coefficients in lattice QCD.
2306.13127



However, the QGP is stronqgly coupled.

¥ Pending a lattice QCD determination, is there
anything else we can learn at strong coupling?

Yes! Using holography, we can:

™ Understand the strong coupling in ./ = 4
SYM, and 2304.03298

M calculate its velocity dependence.  2309.XXXXX
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Velocity dependence of quarkonia transport
rates in AdS/CFT 2309.XXXXX (w/ G. Nijs and X. Yao)

X1,QGP — 1,00




Velocity dependence of quarkonia transport
rates in AdS/CFT 2309.XXXXX (w/ G. Nijs and X. Yao)
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Velocity dependence of quarkonia transport
rates in AdS/CFT 2309.XXXXX (w/ G. Nijs and X. Yao)
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PRELIMINARY
A flavor of what we can do

D 3 XL X000 (w/ X YaQ) Regeneration probability Y(1S), Bjorken flow

0.10

We can now evolve a state

of a heavy quark-antiquark T(z) = T; X (z,/7)"

0.08 A

pair, taking into account: T, = 155 MeV
M Their wavefunction = 7, = 0.6fm/c
evolution using a potential 1 7= 10fm/c
model, allowing for | '§ Using the correlator from holography !
different initial separations 8 0.04
oy between the pair. S

™ Their transition rates via 0.02 -
the correlator we just
discussed.

0.00

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
20 oo [fm]



Summary and conclusions

e \WWe have discussed how to calculate the chromoelectric correlators of the
QGP that govern quarkonium transport.

O |nteresting prospects for interpolating between weak & strong coupling,
and describing non-perturbative QGP physics.

 Next steps (as of Hard Probes 2023):

[ ] Generalize the calculations to include a boosted medium.

[[] Calculate the chromo-magnetic correlators (B"(t)%?fo]Bb 0)) .

[[] Use them as input for quarkonia transport codes.

e Stay tuned!
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Extra slides



["] N. Brambilla, A. Pineda, J. Soto, A. Vairo hep-ph/9707481, hep-ph/9907240, hep-ph/0410047 X. Yao, hep-ph/2102.01736

Time scales of quarkonia

Transitions between

. Interaction with the QGP
quarkonium energy levels . .
(the system) environment (the environment)
unbound
2S ) )
1S L B o L
1 o’ 1] I (MV)2 1
— ~ AL ~ My _~T

Tg

lE
gPNRQCD = Z light quarks +Z gluon T Jd3r Trcolor [S T(iaO - HS)S T OT(iD 0 HO)O

+V,(O'r - gES+h.c.)A ZBOT{r .gE, 0} + -



X. Yao, hep-ph/2102.01736

Open quantum systems
“tracing/integrating out” the QGP

» Given an initial density matrix p,.(f = 0), quarkonium coupled with the QGP
evolves as

Prot(D) = U(0)po(t = 0) UT(I).

 We will only be interested in describing the evolution of quarkonium and its
final state abundances

= py(1) = Trogp |UDpet = OVUT (1)

» Then, one derives an evolution equation for p¢(#), assuming that at the initial
time we have p,_(t = 0) = p(t = 0) @ e o'l | OGP -

24



X. Yao, hep-ph/2102.01736

Open guantum systems

“tracing/integrating out” the QGP: semi-classic description

Unitary evolution of environment + subsystem |

Trace out the environment degrees of freedom
OQS: p¢ has non-unitary, time-irreversible evolution |

Markovian approximation <= weak coupling in H;

- k, nas / s

Wigner transform: f(x, K, 1) = J
P

Semi-classic subsystem: Boltzmann/Fokker-Planck equation



Lindblad equations for quarkonia at low / < Mv
quantum Brownian motion limit & guantum optical limit in pNRQCD

» After tracing out the QGP degrees of freedom, one gets a Lindblad-type
equation:

op |

o F__ )7t

or e Pl Zyj (prLf 0 {LJLJ"”})
J

* This can be done in two different limits within pNRQCD:

Quantum Brownian Motion: Quantum Optical:
see Wprks by TI >> TE TI >> TE see works by
Brambilla et al. TS >> TE TI >> TS Yao et al.

relevant for Mv > T > My~ ) relevant for Mv > Mv>, T



Quantum Brownian Motion limit details

dp(1) :
il z[HS + AHj, Ps(f)] + Kadj<LaipS(t)LT — _{LOELW p S(t)}>
Cra
. — Prel n 4 : AH; = d 2 N?-2
ST M % S22 |0
0 N 2(Nz = 1)

1 NC aSrl O O
2MT 3T r 10
1 1 N. a 01
L, = (r- + V. + — )
. \/Ng.—l " 2MT ' 8T r (0 o)
N? —4
2(N2-1) 2MT




Heavy quark and quarkonia correlators

a small, yet consequential difference

A. M. Eller, J. Ghiglieri and G. D. Moore, hep-ph/1903.08064

What we just found, and had been noticed even earlier by Eller, Ghiglieri and
MOOre, |S S|mp|y Stat|ng tha't They compared M. Eidemuller and M. Jamin, hep-ph/9709419 with

Y. Burnier, M. Laine, J. Langelage and L. Mether, hep-ph/1006.0867

T (ELOW P GOENO), # T [U= 00, DEWUGOEOU(O, ~ )] ).

Foi(t) Fo;(t)

Fo:(0) u £, (0)
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BS and X. Yao, hep-ph/2205.04477

An axial gauge puzzle

an apparent (but not actual) inconsistency

* This finding presents a puzzle:

O Let’s say we were able to set axial gauge A, = 0.

o Then, the two correlation functions would look the same:

Ty (ESOE0)) = <Trmlm, E(DE(0)] >T.
o |f true, this would imply that:
A. one of the calculations is wrong, or

B. one of the correlators is not gauge invariant.
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BS and X. Yao, hep-ph/2205.04477

An axial gauge puzzle

an apparent (but not actual) inconsistency

* This finding presents a puzzle:

© Let S say we were able to set aX|aI gauge AO = O —> The problem is here

O Then the two Correlatlon functlons would Iook the same:
Ty (ESOE0)) = <T1~C010r E(DE(0)] >T.

o |f true, this would imply that: ~ Unlikely: we verified
~—""  this independently

A. one of the calculations is wrong, or

___,, False: both definitions
- are explicitly invariant

B. one of the correlators is not gauge invariant.



BS and X. Yao, hep-ph/2205.04477

An aXial gauge puzzle We verified that this difference between

: the correlators is gauge invariant using
an apparent (but not actual) incons . . e
an interpolating gauge condition:

1
GilA] = —Af() + 0" Af(x)

O Let’s say we were able to set axial gauge A, = 0. == The problem is here

* This finding presents a puzzle:

o Then, the two correlation functions would look the same:

T (EXOEO),, =  Treaior [EOEO) >T.
o |f true, this would imply that: _ Unlikely: we verified
~ 7 this independently

A. one of the calculations is wrong, or

. . . . False: both definitions
B. one of the correlators is not gauge invariant. - o .
29 are explicitly invariant




[**] J. Maldacena, hep-th/9711200

Wilson loops in AdS/CFT

setup

* The holographic duality provides a way to formulate the calculation of
analogous correlators in strongly coupled theories. [**]

o Wilson loops can be evaluated by solving classical equations of motion;

(W[E = 0Z]), = e™Ncl™

D-brane

3 J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal
30 and U. A. Wiedemann, hep-ph/1101.0618



How do Wilson loops help?

setup — pure gauge theory

* Field strength insertions along a Wilson loop can be generated by taking
variations of the path 6

W€
5f(s,) Of¥(s;) ey

f=

0

= (ig)"Tr color lU (1.5,]L Mp(?’(sz))f’p (s))U (55510 w(YSD)7 ()Y [51,0]]
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How do Wilson loops help?

setup — pure gauge theory

* Field strength insertions along a Wilson loop can be generated by taking
variations of the path 6

WIE| = (8 Tregior| Ut Fop (o750 Uy Foor ()0 Uy )
=0
 Same as the lattice calculation of the heavy quark diffusion coefficient:

A T
(/

L,T_J ;J 1 _—,l_,_‘)

31 figure credit: L. Altenkort

oft(s,) of¥(s1)




[**] J. Maldacena, hep-th/9711200

Wilson loops in AdS/CFT

setup

* The holographic duality provides a way to formulate the calculation of
analogous correlators in strongly coupled theories. [**]

o Wilson loops can be evaluated by solving classical equations of motion;

(W[E = 0Z]), = e"nal*

D-brane

Metric of interest for finite 1 calculations:

R? 1
ds? = = |- f(2) dt* + dx* + @ dz* + 7°dQz

_ 4
f(Z) — 1 T (ﬂTZ) J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal
30 and U. A. Wiedemann, hep-ph/1101.0618



D-brane




D-brane




D-brane
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D-brane

¢ Our task is to solve for |

f the perturbed
worldsheet for

arbitrary (but small)

33



Wilson loops In /' = 4 SYM

a slightly different observable

* A holographic dual in terms of an extremal surface exists for

G Al = —Tr | Pexp [ igd dsTo[A%5 + hGs) - VR
WBPS[ ;1] _V Loolor cXp | 14 ; S [ X + n(s) - gb X ] :

C

which Is not the standard Wilson loop.
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a slightly different observable

* A holographic dual in terms of an extremal surface exists for

W@l = T | Pexp (i dsTe [ + o) /P
BPS[ 9n] _V Leolor CXP | 18 . S ,ux + I”l(S) ¢ X ;

C

which Is not the standard Wilson loop.

» /N =4 SYM has 6 scalar fields 5", which enter the above Wilson loop through
a direction 71 € Ss. Also, its dual gravitational description is AdSs X Ss.
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Wilson loops In /' = 4 SYM

a slightly different observable

* A holographic dual in terms of an extremal surface exists for

Wl A1 =T | Pexp i dsTe[ st + o) - 7/
BPS[ 9n] _V Leolor CXP | 18 . S /,tx T n(S) §b X ,

C

which Is not the standard Wilson loop.

» /N =4 SYM has 6 scalar fields E‘l, which enter the above Wilson loop through
a direction 71 € Ss. Also, its dual gravitational description is AdSs X Ss.

» What to do with this extra parameter? For a single heavy quark, just set n = n,
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Choosing 7

what is the best proxy for an adjoint Wilson line?

* A key property of the adjoint Wilson line is

WP = LTr [97{T“U T°U" }]
[52»t1] ,

[6,5] :
2.1 T+ [15,1]
which means that we can obtain the correlator w? want by studying
deformations of a Wilson loop of the form W = VTI‘[UUT] = 1.
C
* This leads us to consider the following loop:
., n =1 .,



The Schwinger-Keldysh contour
quarkonia and heavy quarks

00

Wab [

t:ti—iﬁ 0 t:ti_i’ﬁ
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Im{z}4

The Schwinger-Keldysh contour

quarkonia and heavy quarks

 The heavy quark Is present at all —
times: -

o [t is part of the construction of DA A A
e thermal state B R S e

o The Wilson line, which enforces i U
the Gauss’ law constraint due to E
the point charge, is also present
on the Euclidean segment.
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Im{z}4

The Schwinger-Keldysh contour

quarkonia and heavy quarks

Re{r}

Y * |n this correlator, the heavy quark
- pair is present at all times, but it is
only color-charged for a finite time:

R O [t is not part of the construction
T of the thermal state.

o The adjoint Wilson line,
representing the propagation of
unbound quarkonium (in the
adjoint representation), is only

t=1t;—1ip
present on the real-time segment.
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["**] J. Casalderrey-Solana and D. Teaney, hep-ph/0605199

Review: Heavy Quark
Diffusion in AdS/CFT

using the same computational n T
technique vV T

time-ordered branch of SK
contour

Steps of the calculation: B N

1. Find the appropriate Ads/Schwarzsehid ’
background solution

anti time-ordered branch of
SK contour

37
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Review: Heavy Quark
Diffusion in AdS/CFT

using the same computational
technique

time-ordered branch of SK
contour

Steps of the calculation: i L

1. Find the appropriate AdS/Schwarzschid
background solution L H
2. Introduce perturbations B o RS s
//

anti time-ordered branch of
SK contour
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["**] J. Casalderrey-Solana and D. Teaney, hep-ph/0605199

Review: Heavy Quark
Diffusion in AdS/CFT

using the same computational
technique

time-ordered branch of SK
contour

[
/

Steps of the calculation: By

[ |

1. Find the appropriate Ads/Schwarzsehid ’
background solution

2. Introduce perturbations g

3. Evaluate the deformed e T
Wilson loop and take P
derivatives

anti time-ordered branch of
SK contour
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["**] J. Casalderrey-Solana and D. Teaney, hep-ph/0605199

Review: Heavy Quark
Diffusion in AdS/CFT

using the same computational
technique

time-ordered branch of SK
contour

[
/

Steps of the calculation: Ry

[ |

1. Find the appropriate AdS/Schwarzschid ’ St it bttt i i
background solution L H

2. Introduce perturbations B o RS s

3. Evaluate the deformed g T
Wilson loop and take P
derivatives anti time-ordered branch of

0 3 SK contour
From here: k = 7y / g°N_. T



Quarkonium correlator in AdS/CFT

a very similar picture

|

e Same steps as before:

1. Find background solution

2. Introduce perturbations
3. Evaluate the derivatives

e Differences:

o Boundary conditions

O Time-ordered correlator;
not retarded



SK contour and Holography

Heavy quark correlator Re{r}

Fluctuations are matched through the imaginary time segment
solving the equations of motion = factors of eﬁ“), KMS relations




SK contour and Holography

Heavy quark correlator Re{r}

Fluctuations are matched through the imaginary time segment
solving the equations of motion = factors of eﬁ“), KMS relations

[

'From here: k = & gzNC T’

; J. Casalderrey-Solana and D. Teaney, hep-ph/0605199



SK contour and Holography

Quarkonium correlator

Fluctuations are matched at the turnaround points of the extremal
surface. No direct sensitivity to the imaginary time segment.
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How the calculation proceeds

what equations do we need to solve?

* The classical, unperturbed equations of motion from the Nambu-Goto action to

determine X
1
Se = — drdoy [ - det( 9. X¥0 X) |
NG ZﬂCZ,J' Sy g

 The classical, linearized equation of motion with perturbations in order to be able to
calculate derivatives of (W[Cgf]h = ¢"nalyl,

5 Sngl 2]
of(11)of (1)

fit)ft) + O(f).

=0

* |n practice, the equations are only numerically stable in Euclidean signature, so we
have to solve them and analytically continue back.




See also: N. Brambilla et al. hep-ph/1612.07248, hep-ph/1711.04515, hep-ph/2205.10289 X. Yao and T. Mehen, hep-ph/2009.02408

QGP chromoelectric correlators

for quarkonia transport (8771 (0 11 Ry, R = (72 E, (R, 1)) (E, Ry 1)7 1))
(Ri,400)  (Ry,+00) !
< > R

Related by KMS
conditions and
parity + time

reversal E;, (R, t2)
o

)

>

Eil (Rl ? tl)

@
Eig (R27 tQ)

[
Eil (Rl 9 tl)

> R
(82117 (1, 11, Ry, Ry) = ((E; (R, fz)Wz)a(WlEil(Rhtl))2a>T

bl

(R1,~00)  (Ra,—0)



T. Binder, K. Mukaida, BS and X. Yao, hep-ph/2107.03945

The spectral function of quarkonia

symmetries and KMS relations

The KMS conjugates of the previous correlators are such that
OrT —— T, ——
(g7 (@) = e (g 15(q) . [ 15(q) = e g7 15(q) .
and one can show that they are related by

877 15(q) = (8 15 (—q) . (8 17(q) = (g7 5(—q) .

/

The spectral functions [pz ™~ "1:(q) = [g; K ];.(q) — [g+t ];.(q) are not

necessarily odd under g <> — g. However, they do satisfy:

[Pljerr]ji(Q) — e 1i(=4q) .



