Quarkonium transport in weakly and strongly coupled plasmas

30th International Conference on Ultra-relativistic Nucleus-Nucleus Collisions, Houston TX, United States of America September 6, 2023

Bruno Scheihing-Hitschfeld (MIT) based on 2107.03945, 2205.04477, 2304.03298, 2306.13127, 2309.XXXXX

 $M \gg Mv \gg Mv^2$

M: heavy quark mass v: typical relative speed

color octet; "unbound" state

color octet; "unbound" state

color octet; "unbound" state

 $M \gg Mv \gg Mv^2$

M: heavy quark mass v: typical relative speed

color octet; "unbound" state

Quarkonium in medium

At high T, quarkonium "melts" because the medium screens the interactions between heavy quarks (Matsui & Satz 1986)

 $Q\bar{Q} \text{ melts if } r \sim \frac{1}{M_V} \gg \frac{1}{T}$

Q: c or b quark \bar{Q} : \bar{c} or \bar{b} quark

color octet; "unbound" state

color octet; "unbound" state

color octet; "unbound" state

Quarkonium in medium

 \bar{Q}

color singlet; "bound" state

 \mathcal{Q}

Q: c or b quark

 \bar{Q} : \bar{c} or \bar{b} quark

⇒ We need to understand the above dynamics in the hierarchy

 $Mv \gg T$

⇒ pNRQCD [*]

Quarkonium as an open quantum system

Transitions between quarkonium energy levels (the system)

Quarkonium as an open quantum system

Quarkonium as an open quantum system

Quarkonium as an open quantum system

How does the QGP enter the dynamics?

QGP chromoelectric correlators for quarkonia transport

 $[g_E^{++}]_{i_2i_1}^{>}(t_2, t_1, \mathbf{R}_2, \mathbf{R}_1) = \left\langle \left(E_{i_2}(\mathbf{R}_2, t_2) \mathcal{W}_2 \right)^a \left(\mathcal{W}_1 E_{i_1}(\mathbf{R}_1, t_1) \right)_{\mathcal{H}_2}^a \right\rangle_T$

QGP chromoelectric correlators for quarkonia transport

 $[g_E^{++}]_{i_2i_1}^{>}(t_2, t_1, \mathbf{R}_2, \mathbf{R}_1) = \left\langle \left(E_{i_2}(\mathbf{R}_2, t_2) \mathcal{W}_2 \right)^a \left(\mathcal{W}_1 E_{i_1}(\mathbf{R}_1, t_1) \right)_{\mathcal{H}}^a \right\rangle_{\mathcal{T}}$

X. Yao and T. Mehen, hep-ph/2009.02408 T. Binder, K. Mukaida, B. Scheihing-Hitschfeld, X. Yao, hep-ph/2107.03945

"bound" state: color singlet

QGP chromoelectric correlators for quarkonia transport

 $[g_E^{++}]_{i_2i_1}^{>}(t_2, t_1, \mathbf{R}_2, \mathbf{R}_1) = \left\langle \left(E_{i_2}(\mathbf{R}_2, t_2) \mathcal{W}_2 \right)^a \left(\mathcal{W}_1 E_{i_1}(\mathbf{R}_1, \mathbf{R}_2, t_2) \mathcal{W}_2 \right)^a \right\rangle \right\rangle$

$$,t_1) \Big)_{5}^{a} \Big\rangle_{T}$$

for quarkonia transport

 $[g_E^{++}]_{i_2i_1}^{>}(t_2, t_1, \mathbf{R}_2, \mathbf{R}_1) = \left\langle \left(E_{i_2}(\mathbf{R}_2, t_2) \mathcal{W}_2 \right)^a \left(\mathcal{W}_1 E_{i_1}(\mathbf{R}_1, t_1) \right)_{\mathcal{I}}^a \right\rangle_{\mathcal{T}}$

for quarkonia transport

 $[g_E^{++}]_{i_2i_1}^{>}(t_2, t_1, \mathbf{R}_2, \mathbf{R}_1) = \left\langle \left(E_{i_2}(\mathbf{R}_2, t_2) \mathcal{W}_2 \right)^a \left(\mathcal{W}_1 E_{i_1}(\mathbf{R}_1, t_1) \right)_{\mathcal{H}}^a \right\rangle_T$

for quarkonia transport

See also: N. Brambilla et al. hep-ph/1612.07248, hep-ph/1711.04515, hep-ph/2205.10289

QGP chromoelectric correlators for quarkonia transport

 $[g_E^{++}]_{i_2i_1}^{>}(t_2, t_1, \mathbf{R}_2, \mathbf{R}_1) = \left\langle \left(E_{i_2}(\mathbf{R}_2, t_2) \mathcal{W}_2 \right)^a \left(\mathcal{W}_1 E_{i_1}(\mathbf{R}_1, t_1) \right)_{\mathcal{I}}^a \right\rangle_{\mathcal{T}}$

X. Yao and T. Mehen, hep-ph/2009.02408 T. Binder, K. Mukaida, B. Scheihing-Hitschfeld, X. Yao, hep-ph/2107.03945 the "unbound" state carries color charge and interacts with the medium the correlation function associated "unbound" state: to this process color octet Qnedium-induced transition "bound" state: \bar{Q} color singlet

. ::

QGP chromoelectric correlators for quarkonia transport

"bound" state: color singlet

medium-induced transition

"unbound" state: color octet

the "unbound" state carries color charge and interacts with the medium

Why are these correlators interesting?

Quarkonium in the quantum brownian motion limit $Mv \gg T \gg Mv^2$ (Brambilla et al.)

The correlators determine the transport coefficients:

$$\gamma_{\rm adj} \equiv \frac{g^2}{6N_c} \operatorname{Im} \int_{-\infty}^{\infty} ds \, \langle \mathcal{T} E^{a,z} \rangle \\ \kappa_{\rm adj} \equiv \frac{g^2}{6N_c} \operatorname{Re} \int_{-\infty}^{\infty} ds \, \langle \mathcal{T} E^{a,z} \rangle \\ \end{cases}$$

 $\frac{d\rho_{S}(t)}{dt} = -i\left[H_{S} + \Delta H_{S}, \rho_{S}(t)\right] + \kappa_{\mathrm{adj}}\left(L_{\alpha i}\rho_{S}(t)L_{\alpha i}^{\dagger} - \frac{1}{2}\left\{L_{\alpha i}^{\dagger}L_{\alpha i}, \rho_{S}(t)\right\}\right)$

 $^{i}(s, 0) \mathcal{W}^{ab}[(s, 0), (0, 0)] E^{b, i}(0, 0) \rangle$

 $F^{i}(s, \mathbf{0}) \mathcal{W}^{ab}[(s, \mathbf{0}), (0, \mathbf{0})] E^{b, i}(0, \mathbf{0}) \rangle$.

Quarkonium in the quantum optical limit **Semiclassical approximation** + $Mv \gg Mv^2$, T (Yao et al.)

These correlators determine the dissociation and formation rates of quarkonia: $\Gamma^{\text{diss}} \propto \left[\frac{d^3 \mathbf{p}_{\text{rel}}}{(2\pi)^3} \frac{d^3 \mathbf{q}}{(2\pi)^3} |\langle \psi_{\mathscr{B}} | \mathbf{r} | \Psi_{\mathscr{B}} \rangle \right]$ $R^{\text{form}}(t, \mathbf{x}) \propto \int \frac{d^3 \mathbf{p}_{\text{cm}}}{(2\pi)^3} \frac{d^3 \mathbf{p}_{\text{rel}}}{(2\pi)^3} \frac{d^3 \mathbf{q}}{(2\pi)^3} |\langle \psi \rangle|^2$

$$\frac{dn_b(t, \mathbf{x})}{dt} = -\Gamma^{\text{diss}} n_b(t, \mathbf{x}) + R^{\text{form}}(t)$$

$$\begin{split} \Psi_{\mathbf{p}_{\text{rel}}} \rangle |^{2} [g_{E}^{++}]_{ii}^{>} \left(q^{0} = E_{\mathscr{B}} - \frac{\mathbf{p}_{\text{rel}}^{2}}{M}, \mathbf{q} \right), \\ \Psi_{\mathscr{B}} |\mathbf{r}| \Psi_{\mathbf{p}_{\text{rel}}} \rangle |^{2} [g_{E}^{--}]_{ii}^{>} \left(q^{0} = \frac{\mathbf{p}_{\text{rel}}^{2}}{M} - E_{\mathscr{B}}, \mathbf{q} \right) \\ \times f_{\mathscr{S}} (\mathbf{x}, \mathbf{p}_{\text{cm}}, \mathbf{r} = 0, \mathbf{p}_{\text{rel}}, \mathbf{r}) \end{split}$$

A comparison with heavy quark diffusion

Different physics with the same building blocks

J. Casalderrey-Solana and D. Teaney, hep-ph/0605199

 The heavy quark diffusion coefficient is also defined from a correlation of chromoelectric fields:

$$\langle \operatorname{Tr} \left[\left(U_{[\infty,t]} E_i(t) U_{[t,-\infty]} \right)^{\dagger} \times \left(U_{[\infty,0]} E_i(0) U_{[0,-\infty]} \right) \right] \rangle$$

• It reflects the typical momentum transfer $\langle p^2 \rangle$ received from "kicks" from the medium.

heavy quark

 \underline{Q}

J. Casalderrey-Solana and D. Teaney, hep-ph/0605199

 The heavy quark diffusion coefficient is also defined from a correlation of chromoelectric fields:

$$\langle \operatorname{Tr} \left[\left(U_{[\infty,t]} E_i(t) U_{[t,-\infty]} \right)^{\dagger} \times \left(U_{[\infty,0]} E_i(0) U_{[0,-\infty]} \right) \right] \rangle$$

• It reflects the typical momentum transfer $\langle p^2 \rangle$ received from "kicks" from the medium.

the heavy quark carries color charge and interacts with the medium

heavy quark

J. Casalderrey-Solana and D. Teaney, hep-ph/0605199

 The heavy quark diffusion coefficient is also defined from a correlation of chromoelectric fields:

$$\langle \operatorname{Tr} \left[\left(U_{[\infty,t]} E_i(t) U_{[t,-\infty]} \right)^{\dagger} \times \left(U_{[\infty,0]} E_i(0) U_{[0,-\infty]} \right) \right] \rangle$$

• It reflects the typical momentum transfer $\langle p^2 \rangle$ received from "kicks" from the medium.

J. Casalderrey-Solana and D. Teaney, hep-ph/0605199

 The heavy quark diffusion coefficient is also defined from a correlation of chromoelectric fields:

$$\langle \operatorname{Tr} \left[\left(U_{[\infty,t]} E_i(t) U_{[t,-\infty]} \right)^{\dagger} \times \left(U_{[\infty,0]} E_i(0) U_{[0,-\infty]} \right) \right] \rangle$$

• It reflects the typical momentum transfer $\langle p^2 \rangle$ received from "kicks" from the medium.

the heavy quark carries color charge and interacts with the medium

"kick" from the QGP: momentum transfer is effected

> the heavy quark carries color charge and interacts with the medium

heavy quark

Heavy quark and quarkonia correlators a small, yet consequential difference

The heavy quark diffusion coefficient can be defined from the real-time correlator J. Casalderrey-Solana and D. Teaney, hep-ph/0605199; see also A. M. Eller, J. Ghiglieri and G. D. Moore, hep-ph/1903.08064

$$\left\langle \operatorname{Tr}_{\operatorname{color}}\left[U(-\infty,t)E_{i}(t)U(t,0)E_{i}(0)U(0,-\infty)\right]\right\rangle_{T},$$

whereas for quarkonia the relevant quantity is ($\mathbf{R}_1 = \mathbf{R}_2$ in the preceding discussion)

$$T_F\left\langle E_i^a(t)\mathcal{W}^{ab}(t,0)E_i^b(0)\right\rangle_T.$$

The difference in pQCD operator ordering is crucial!

Perturbatively, one can isolate the difference between the correlators to these diagrams.

 $\Delta \rho(\omega) = \frac{g^4 N_c^2 C_F T_F}{4\pi} |\omega|^3$

The difference in pQCD operator ordering is crucial!

Perturbatively, one can isolate the difference between the correlators to these diagrams.

$$\Delta \rho(\omega) = \frac{g^4 N_c^2 C}{4\pi}$$

The difference is due to different operator orderings (different possible gluon insertions).

The difference in pQCD operator ordering is crucial!

Perturbatively, one can isolate the difference between the correlators to these diagrams.

$$\Delta \rho(\omega) = \frac{g^4 N_c^2 C}{4\pi}$$

The difference is due to different operator orderings (different possible gluon insertions).

The difference in pQCD Gauge invariant! operator ordering is crucial!

Perturbatively, one can isolate the difference between the correlators to these diagrams.

$$\Delta \rho(\omega) = \frac{g^4 N_c^2 C}{4\pi}$$

The difference is due to different operator orderings (different possible gluon insertions).

Can we calculate this difference non-perturbatively in QCD?

A Lattice QCD perspective heavy quark diffusion

 The heavy quark diffusion coefficient has been studied by evaluating the following correlation function (e.g., Altenkort et al. 2009.13553, 2302.08501; Leino et al. 2212.10941):

$$G_{\text{fund}}(\tau) = -\frac{1}{3} \frac{\left\langle \text{ReTr}_{c}[U(\beta,\tau) gE_{i}(\tau) U(\tau,0) gE_{i}(0)] \right\rangle}{\left\langle \text{ReTr}_{c}[U(\beta,0)] \right\rangle}$$

 The heavy quark diffusion coefficient is extracted by reconstructing the corresponding spectral function (Caron-Huot et al. 0901.1195):

$$G_{\text{fund}}(\tau) = \int_{0}^{+\infty} \frac{d\omega}{2\pi} \frac{\cosh\left(\omega(\tau - \frac{1}{2T})\right)}{\sinh\left(\frac{\omega}{2T}\right)} \rho_{\text{fund}}(\omega) , \quad \kappa_{\text{fund}} = \lim_{\omega \to 0} \frac{T}{\omega} \rho_{\text{fund}}(\omega)$$

A Lattice QCD perspective quarkonium transport (hep-ph/2306.13127 w/ X. Yao)

The quarkonium correlator in imaginary time has received less attention:

$$G_{\rm adj}(\tau) = \frac{T_F g^2}{3N_c} \left\langle E_i^a(\tau) \mathcal{W}^{ab}(\tau, 0) E_i^b(0) \right\rangle \,.$$

$$G_{\rm adj}(\tau) = \int_{-\infty}^{+\infty} \frac{\mathrm{d}\omega}{2\pi} \frac{\exp\left(\omega(\frac{1}{2T} - \tau)\right)}{2\sinh\left(\frac{\omega}{2T}\right)} \rho_{\rm adj}^{++}(\omega) , \quad \kappa_{\rm adj} = \lim_{\omega \to 0} \frac{T}{2\omega} \left[\rho_{\rm adj}^{++}(\omega) - \rho_{\rm adj}^{++}(-\omega)\right]$$

- - $\omega \rightarrow -\omega$, because $G_{adj}(\tau)$ is not invariant under $\tau \rightarrow 1/T \tau$.

• The transport coefficients can also be extracted by spectral reconstruction:

- Main new ingredient: the spectral function $ho_{
m adj}^{++}(\omega)$ is not odd under

In summary, we have: Understood the weakly coupled 2107.03945, 2205.04477 limit in QCD, and formulated how to extract the transport coefficients in lattice QCD. 2306.13127

However, the QGP is strongly coupled.

- Pending a lattice QCD determination, is there anything else we can learn at strong coupling?
- Yes! Using holography, we can:
 - **SYM**, and **SYM**, and
 - Content of the second secon

Results in $\mathcal{N} = 4$ **SYM at strong coupling**

Velocity dependence of quarkonia transport rates in AdS/CFT 2309.XXXXX (w/ G. Nijs and X. Yao)

Velocity dependence of quarkonia transport rates in AdS/CFT 2309.XXXXX (w/ G. Nijs and X. Yao)

Velocity dependence of quarkonia transport rates in AdS/CFT 2309.XXXXX (w/ G. Nijs and X. Yao)

Result:

The correlator has the same form as in the v = 0 case, with

 $T_{\rm eff,QQ} = \sqrt{\gamma T_{\rm QGP}},$

where $\gamma = 1/\sqrt{1-v^2}$.

Velocity dependence of quarkonia transport rates in AdS/CFT 2309.XXXXX (w/ G. Nijs and X. Yao)

Result:

The correlator has the same form as in the v = 0 case, with

 $T_{\rm eff,QQ} = \sqrt{\gamma} T_{\rm QGP} ,$

where $\gamma = 1/\sqrt{1-v^2}$.

A flavor of what we can do 23XX.XXXXX (w/ X. Yao) 0.10

We can now evolve a state of a heavy quark-antiquark pair, taking into account:

Market Their wavefunction evolution using a potential model, allowing for different initial separations σ_0 between the pair.

Their transition rates via the correlator we just discussed.

Y(1S)) 0.06 \overline{qq} ^D(octet, 0.04

0.08

0.02

0.00 +

0.0

PRELIMINARY

Regeneration probability Y(1S), Bjorken flow

Summary and conclusions

- QGP that govern quarkonium transport.
 - and describing non-perturbative QGP physics.
- Next steps (as of Hard Probes 2023):
 - Generalize the calculations to include a boosted medium.
 - \Box Calculate the chromo-magnetic correlators $\langle B^a(t) \mathcal{W}^{ab}_{[t,0]} B^b(0) \rangle_T$.
 - Use them as input for quarkonia transport codes.
- Stay tuned!

We have discussed how to calculate the chromoelectric correlators of the

Interesting prospects for interpolating between weak & strong coupling,

Summary and conclusions

- QGP that govern quarkonium transport.
 - and describing non-perturbative QGP physics.
- Next steps (as of Quark Matter 2023):
 - Generalize the calculations to include a boosted medium.
 - \Box Calculate the chromo-magnetic correlators $\langle B^a(t) \mathcal{W}^{ab}_{[t,0]} B^b(0) \rangle_T$.

• Stay tuned!

We have discussed how to calculate the chromoelectric correlators of the

Interesting prospects for interpolating between weak & strong coupling,

Summary and conclusions

- QGP that govern quarkonium transport.
 - and describing non-perturbative QGP physics.
- Next steps (as of Quark Matter 2023):
 - Generalize the calculations to include a boosted medium.
 - \Box Calculate the chromo-magnetic correlators $\langle B^a(t) \mathcal{W}^{ab}_{[t,0]} B^b(0) \rangle_T$.

• Stay tuned!

We have discussed how to calculate the chromoelectric correlators of the

Interesting prospects for interpolating between weak & strong coupling,

Thank you!

Extra slides

[*] N. Brambilla, A. Pineda, J. Soto, A. Vairo hep-ph/9707481, hep-ph/9907240, hep-ph/0410047

Time scales of quarkonia

X. Yao, hep-ph/2102.01736

Open quantum systems "tracing/integrating out" the QGP

evolves as

$$\rho_{\text{tot}}(t) = U(t)\rho_{\text{tot}}(t=0)U^{\dagger}(t).$$

final state abundances

$$\implies \rho_{S}(t) = \operatorname{Tr}_{QGP} \left[U(t)\rho_{tot}(t=0)U^{\dagger}(t) \right].$$

time we have $\rho_{\text{tot}}(t=0) = \rho_S(t=0) \otimes e^{-H_{\text{QGP}}/T} / \mathcal{Z}_{\text{OGP}}$.

• Given an initial density matrix $\rho_{tot}(t=0)$, quarkonium coupled with the QGP

• We will only be interested in describing the evolution of quarkonium and its

• Then, one derives an evolution equation for $\rho_{S}(t)$, assuming that at the initial

Open quantum systems "tracing/integrating out" the QGP: semi-classic description

Unitary evolution of environment + subsystem

Trace out the environment degrees of freedom

OQS: ρ_S has non-unitary, time-irreversible evolution

Markovian approximation \iff weak coupling in H_I

OQS: Lindblad equation

$$(\mathbf{x}, \mathbf{k}, t) \equiv \int_{k'} e^{i\mathbf{k}'\cdot\mathbf{x}} \left\langle \mathbf{k} + \frac{\mathbf{k}'}{2} \right| \rho_S(t) \left| \mathbf{k} - \frac{\mathbf{k}'}{2} \right\rangle$$

Semi-classic subsystem: Boltzmann/Fokker-Planck equation

Lindblad equations for quarkonia at low $T \ll Mv$ quantum Brownian motion limit & quantum optical limit in pNRQCD

 After tracing out the QGP degrees of freedom, one gets a Lindblad-type equation:

$$\frac{\partial \rho}{\partial t} = -i[H_{\text{eff}}, \rho] + \sum_{j} \gamma_{j} \left(L_{j} \rho L_{j}^{\dagger} - \frac{1}{2} \left\{ L_{j}^{\dagger} L_{j}, \rho \right\} \right)$$

 This can be done in two different limits within pNRQCD: Quantum Brownian Motion:

see works by Brambilla et al.

$$\tau_I \gg \tau_E$$

 $\tau_S \gg \tau_F$

relevant for $Mv \gg T \gg Mv^2$

Quantum Optical:

 $\tau_I \gg \tau_E$

 $\tau_I \gg \tau_{\varsigma}$

Yao et al.

relevant for $Mv \gg Mv^2$, T

Quantum Brownian Motion limit details

$$\frac{d\rho_{S}(t)}{dt} = -i\left[H_{S} + \Delta H_{S}, \rho_{S}(t)\right] + \kappa_{\mathrm{adj}}\left(L_{\alpha i}\rho_{S}(t)L_{\alpha i}^{\dagger} - \frac{1}{2}\left\{L_{\alpha i}^{\dagger}L_{\alpha i}, \rho_{S}(t)\right\}\right)$$

$$H_{S} = \frac{\mathbf{p}_{\text{rel}}^{2}}{M} + \begin{pmatrix} -\frac{C_{F}\alpha_{s}}{r} & 0\\ 0 & \frac{\alpha_{s}}{2N_{c}r} \end{pmatrix}$$

$$L_{1i} = \left(r_i + \frac{1}{2MT}\nabla_i - \frac{1}{2MT}\nabla_i\right)$$

$$L_{2i} = \sqrt{\frac{1}{N_c^2 - 1}} \left(r_i + \frac{1}{2MT} \nabla_i + \frac{N_c}{8T} \frac{\alpha_s r_i}{r} \right) \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$L_{3i} = \sqrt{\frac{N_c^2 - 4}{2(N_c^2 - 1)}} \left(r_i + \frac{1}{2MT}\nabla_i\right) \begin{pmatrix}0 & 0\\0 & 1\end{pmatrix}$$

,
$$\Delta H_S = \frac{\gamma_{adj}}{2} r^2 \begin{pmatrix} 1 & 0 \\ 0 & \frac{N_c^2 - 2}{2(N_c^2 - 1)} \end{pmatrix}$$

$$\frac{N_c}{8T} \frac{\alpha_s r_i}{r} \left(\begin{array}{c} 0 & 0 \\ 1 & 0 \end{array} \right)$$

Heavy quark and quarkonia correlators a small, yet consequential difference

What we just found, and had been noticed even earlier by Eller, Ghiglieri and Moore, is simply stating that: They compared M. Eidemuller and M. Jamin, hep-ph/9709419 with Y. Burnier, M. Laine, J. Langelage and L. Mether, hep-ph/1006.0867

$$T_F \left\langle E_i^a(t) \mathcal{W}^{ab}(t,0) E_i^b(0) \right\rangle_T \neq \left\langle \mathrm{Tr}_{\mathrm{colo}} \right\rangle_T$$

A. M. Eller, J. Ghiglieri and G. D. Moore, hep-ph/1903.08064

$\int_{OP} \left[U(-\infty, t) E_i(t) U(t, 0) E_i(0) U(0, -\infty) \right] \right\}_{T}$

- This finding presents a puzzle:
 - Let's say we were able to set axia Ο
 - Then, the two correlation functions would look the same: 0

$$T_F \left\langle E_i^a(t) E_i^a(0) \right\rangle_T = \left\langle \operatorname{Tr}_{\operatorname{color}} \left[E_i(t) E_i(0) \right] \right\rangle_T.$$

- If true, this would imply that:
 - A. one of the calculations is wrong, or
 - B. one of the correlators is not gauge invariant.

al gauge
$$A_0 = 0$$
.

- This finding presents a puzzle:
 - Let's say we were able to set axia Ο
 - Then, the two correlation functions would look the same: 0

$$T_F \left\langle E_i^a(t) E_i^a(0) \right\rangle_T = \left\langle \operatorname{Tr}_{\text{color}} \left[E_i(t) E_i(0) \right] \right\rangle_T$$

- If true, this would imply that:
 - A. one of the calculations is wrong, or
 - B. one of the correlators is not gauge invariant.

al gauge
$$A_0 = 0$$
.

Unlikely: we verified this independently

- This finding presents a puzzle:
 - Let's say we were able to set axia Ο
 - Then, the two correlation functions would look the same: 0

$$T_F \left\langle E_i^a(t) E_i^a(0) \right\rangle_T = \left\langle \operatorname{Tr}_{\text{color}} \left[E_i(t) E_i(0) \right] \right\rangle_T$$

- If true, this would imply that:
 - A. one of the calculations is wrong, or
 - B. one of the correlators is not gauge invariant.

al gauge
$$A_0 = 0$$
.

Unlikely: we verified this independently

False: both definitions are explicitly invariant

- This finding presents a puzzle:
 - 0 Let's say we were able to set axia
 - Then, the two correlation functions would look the same: Ο

$$T_F \left\langle E_i^a(t) E_i^a(0) \right\rangle_T = \left\langle \operatorname{Tr}_{\text{color}} \left[E_i(t) E_i(0) \right] \right\rangle_T$$

- If true, this would imply that:
 - A. one of the calculations is wrong, or
 - B. one of the correlators is not gauge invariant.

al gauge
$$A_0 = 0$$
. \implies The problem is here

Unlikely: we verified this independently

False: both definitions are explicitly invariant

- This finding presents a puzzle:
 - Let's say we were able to set axial gauge $A_0 = 0$. Ο
 - Then, the two correlation functions would look the same: 0

$$T_F \left\langle E_i^a(t) E_i^a(0) \right\rangle_T = \left\langle \operatorname{Tr}_{\text{color}} \left[E_i(t) E_i(0) \right] \right\rangle_T$$

- If true, this would imply that:
 - A. one of the calculations is wrong, or
 - B. one of the correlators is not gauge invariant.

We verified that this difference between the correlators is gauge invariant using an interpolating gauge condition:

$$G_M^a[A] = \frac{1}{\lambda} A_0^a(x) + \partial^\mu A_\mu^a(x)$$

 \implies The problem is here

Unlikely: we verified this independently

False: both definitions are explicitly invariant

Wilson loops in AdS/CFT setup

- The holographic duality provides a way to formulate the calculation of analogous correlators in strongly coupled theories. [**]
 - Wilson loops can be evaluated by solving classical equations of motion: 0

 $\langle W | \mathscr{C} = \delta$

$$\partial \Sigma] \rangle_T = e^{i S_{\rm NG}[\Sigma]}$$

How do Wilson loops help? setup – pure gauge theory

 Field strength insertions along a Wilson loop can be generated by taking variations of the path \mathscr{C} :

$$\frac{\delta}{\delta f^{\mu}(s_2)} \frac{\delta}{\delta f^{\nu}(s_1)} W[\mathscr{C}_f] \bigg|_{f=0} = (ig)^2 \operatorname{Tr}_{\operatorname{color}} \left[U_{f=0} \right]_{f=0}$$

 $U_{[1,s_2]}F_{\mu\rho}(\gamma(s_2))\dot{\gamma}^{\rho}(s_2)U_{[s_2,s_1]}F_{\nu\sigma}(\gamma(s_1))\dot{\gamma}^{\sigma}(s_1)U_{[s_1,0]}$

How do Wilson loops help? setup – pure gauge theory

• Field strength insertions along a Wilson loop can be generated by taking variations of the path \mathscr{C} :

$$\frac{\delta}{\delta f^{\mu}(s_2)} \frac{\delta}{\delta f^{\nu}(s_1)} W[\mathscr{C}_f] \bigg|_{f=0} = (ig)^2 \operatorname{Tr}_{\operatorname{color}} \bigg[U_{[1,s_2]} F_{\mu\rho}(\gamma(s_2)) \dot{\gamma}^{\rho}(s_2) U_{[s_2,s_1]} F_{\nu\sigma}(\gamma(s_1)) \dot{\gamma}^{\sigma}(s_1) U_{[s_1,0]} \bigg]_{f=0}$$

Same as the lattice calculation of the heavy quark diffusion coefficient:

$$\hat{i} \qquad \hat{\tau} \qquad \hat{\tau} \qquad \hat{E}_i$$

Wilson loops in AdS/CFT setup

- The holographic duality provides a way to formulate the calculation of analogous correlators in strongly coupled theories. [**]
 - Wilson loops can be evaluated by solving classical equations of motion: 0

Metric of interest for finite T calculations:

$$ds^{2} = \frac{R^{2}}{z^{2}} \left[-f(z) dt^{2} + d\mathbf{x}^{2} + \frac{1}{f(z)} dz^{2} + z^{2} d\Omega_{5}^{2} \right]$$
$$f(z) = 1 - (\pi T z)^{4}$$

J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, hep-ph/1101.0618

Our task is to solve for the perturbed worldsheet for arbitrary (but small) changes in the loop ${\mathscr C}$

Wilson loops in $\mathcal{N} = 4$ SYM a slightly different observable

A holographic dual in terms of an extremal surface exists for

$$W_{\text{BPS}}[\mathscr{C}; \hat{n}] = \frac{1}{N_c} \text{Tr}_{\text{color}} \left[\mathscr{P} \exp\left(\left(\frac{1}{N_c} - \frac{1}{N_c} \right) \right) \right]$$

which is *not* the standard Wilson loop.

 $ig \oint_{\mathscr{D}} ds T^a \left[A^a_\mu \dot{x}^\mu + \hat{n}(s) \cdot \overrightarrow{\phi}^a \sqrt{\dot{x}^2} \right] \right) ,$

Wilson loops in $\mathcal{N} = 4$ SYM a slightly different observable

A holographic dual in terms of an extremal surface exists for

$$W_{\text{BPS}}[\mathscr{C};\hat{n}] = \frac{1}{N_c} \text{Tr}_{\text{color}} \left[\mathscr{P} \exp\left(ig \oint_{\mathscr{C}} ds \, T^a \left[A^a_\mu \, \dot{x}^\mu \, + \, \hat{n}(s) \cdot \, \overrightarrow{\phi}^a \sqrt{\dot{x}^2} \, \right] \right) \right]$$

hich is *not* the standard Wilson loop.

W

• $\mathcal{N} = 4$ SYM has 6 scalar fields $\overline{\phi}^a$, which enter the above Wilson loop through a direction $\hat{n} \in S_5$. Also, its dual gravitational description is $AdS_5 \times S_5$.

Wilson loops in $\mathcal{N} = 4$ SYM a slightly different observable

A holographic dual in terms of an extremal surface exists for

$$W_{\text{BPS}}[\mathscr{C};\hat{n}] = \frac{1}{N_c} \text{Tr}_{\text{color}} \left[\mathscr{P} \exp\left(ig \oint_{\mathscr{C}} ds \, T^a \left[A^a_\mu \dot{x}^\mu + \hat{n}(s) \cdot \vec{\phi}^a \sqrt{\dot{x}^2} \right] \right) \right]$$

hich is *not* the standard Wilson loop.

W

- $\mathcal{N} = 4$ SYM has 6 scalar fields $\overline{\phi}^a$, which enter the above Wilson loop through a direction $\hat{n} \in S_5$. Also, its dual gravitational description is $AdS_5 \times S_5$.
- What to do with this extra parameter? For a single heavy quark, just set $\hat{n} = \hat{n}_0$.

Choosing \hat{n} what is the best proxy for an adjoint Wilson line?

A key property of the adjoint Wilson line is

$$\mathscr{W}_{[t_2,t_1]}^{ab} = \frac{1}{T_F} \operatorname{Tr} \left[\mathscr{T} \{ T^a U_{[t_2,t_1]} T^b U_{[t_2,t_1]}^{\dagger} \} \right],$$

- which means that we can obtain the correlator we want by studying deformations of a Wilson loop of the form $W = \frac{1}{N_c} \text{Tr}[UU^{\dagger}] = 1.$
- This leads us to consider the following loop: $\hat{n} = \hat{n}_0$

$$\langle \cdots \rangle \hat{n} = -\hat{n}_0$$

The Schwinger-Keldysh contour quarkonia and heavy quarks

- The heavy quark is present at all times:
 - It is part of the construction of the thermal state.
 - The Wilson line, which enforces the Gauss' law constraint due to the point charge, is also present on the Euclidean segment.

The Schwinger-Keldysh contour $Im\{t\}$ quarkonia and heavy quarks

- In this correlator, the heavy quark pair is present at all times, but it is only color-charged for a finite time:
 - It is *not* part of the construction of the thermal state.
 - The adjoint Wilson line, representing the propagation of unbound quarkonium (in the adjoint representation), is only present on the real-time segment.

using the same computational technique

Steps of the calculation:

1. Find the appropriate background solution

using the same computational technique

Steps of the calculation:

1. Find the appropriate background solution

2. Introduce perturbations

using the same computational technique

Steps of the calculation:

1. Find the appropriate background solution

- 2. Introduce perturbations
- 3. Evaluate the deformed Wilson loop and take derivatives

using the same computational technique

Steps of the calculation:

1. Find the appropriate background solution

- 2. Introduce perturbations
- 3. Evaluate the deformed Wilson loop and take derivatives

From here: $\kappa = \pi \sqrt{g^2 N_c T^3}$

Quarkonium correlator in AdS/CFT a very similar picture

- Same steps as before:
 - 1. Find background solution
 - 2. Introduce perturbations
 - 3. Evaluate the derivatives
- Differences:
 - Boundary conditions
 - Time-ordered correlator; not retarded

SK contour and Holography Heavy quark correlator Fluctuations are matched through the imaginary time segment solving the equations of motion \Rightarrow factors of $e^{\beta\omega}$, KMS relations \downarrow_{τ} t = E_i E_i $= t_{f}$ $t = t_i - i\beta$ 39

$\operatorname{Re}\{t\}$

SK contour and Holography Heavy quark correlator

 $t = t_i - i\beta$

Fluctuations are matched through the imaginary time segment solving the equations of motion \implies factors of $e^{\beta\omega}$, KMS relations \downarrow_{τ}

$\operatorname{Re}\{t\}$

SK contour and Holography Quarkonium correlator

Fluctuations are matched at the turnaround points of the extremal surface. No direct sensitivity to the imaginary time segment.

t = t

How the calculation proceeds what equations do we need to solve?

determine Σ :

$$S_{\rm NG} = -\frac{1}{2\pi\alpha'} \int d\tau d\sigma \sqrt{-\det\left(g_{\mu\nu}\partial_{\alpha}X^{\mu}\partial_{\beta}X^{\nu}\right)}$$

calculate derivatives of $\langle W[\mathscr{C}_f] \rangle_T = e^{iS_{NG}[\Sigma_f]}$:

$$S_{\mathrm{NG}}[\Sigma_f] = S_{\mathrm{NG}}[\Sigma] + \int dt_1 dt_2 \frac{\delta^2 S_{\mathrm{NG}}[\Sigma_f]}{\delta f(t_1) \delta f(t_2)} \left| \begin{array}{c} f(t_1) f(t_2) + O(f^3) \\ f(t_1) f(t_2) + O(f^3) \end{array} \right|_{f=0}$$

have to solve them and analytically continue back.

The classical, unperturbed equations of motion from the Nambu-Goto action to

• The classical, linearized equation of motion with perturbations in order to be able to

• In practice, the equations are only numerically stable in Euclidean signature, so we

See also: N. Brambilla et al. hep-ph/1612.07248, hep-ph/1711.04515, hep-ph/2205.10289

for quarkonia transport

The spectral function of quarkonia symmetries and KMS relations

The KMS conjugates of the previous correlators are such that $[g_E^{++}]_{ii}^{>}(q) = e^{q^0/T}[g_E^{++}]_{ii}^{<}(q)$

and one can show that they are related by

$$[g_E^{++}]_{ji}^{>}(q) = [g_E^{--}]_{ji}^{<}(-q), \quad [g_E^{--}]_{ji}^{>}(q) = [g_E^{++}]_{ji}^{<}(-q).$$

The spectral functions $[\rho_E^{++/--}]_{ii}(q) = [g_E^{++/--}]_{ii}^>(q) - [g_E^{++/--}]_{ii}^<(q)$ are not necessarily odd under $q \leftrightarrow -q$. However, they do satisfy:

$$[\rho_E^{++}]_{ji}(q) = - [\rho_E^{--}]_{ji}(-q).$$

),
$$[g_E^{--}]_{ji}^{>}(q) = e^{q^0/T}[g_E^{--}]_{ji}^{<}(q)$$
,