What carries the baryon number?

Simulations of baryon and electric charge stopping in isobar collisions at RHIC

Grégoire Pihan¹, Akihiko Monnai², Bjoern Schenke³, Chun Shen^{1,3}

¹Wayne state University, Detroit, USA, ²Osaka Institute of technology, Osaka, Japan, ³Brookhaven National Lab, Upton, USA

Baryon number: carried by the valence quarks?

 $\pm \frac{1}{3}$ B to each quarks and antiquarks cannot be inferred from QCD first principles for baryons!

$$B=rac{1}{3}(n_q-n_{ar{q}})$$

This is an assumption

The string junction?

 \succ The string junction x carries the baryon number inside the baryon

Can be verified experimentally: Baryon stopping in central pp and AA collisions

D. Kharzeev, Physics Letters B 378, 238 (1996)

Baryon stopping and string junction

q

 \bigcirc

0

Exponential decrease as a function of the rapidity loss $\,\delta y$

$$rac{dN_{p-ar{p}}/dy}{2N_{ ext{part}}} = N_B e^{-lpha \delta y} \qquad \qquad N_B = 1.1 \ lpha = 0.61$$

String junction allows to two possibilities

The baryon number goes on one of the valence quark

The baryon number to fluctuate towards mid-rapidity

The baryon number is stopped!

 $\check{\overline{q}}$

mE

0

B=1

Baryon stopping and string junction

AGS E802 SPS NA49

RHIC STAR

LHC ALICE

7

double

8

9

RHIC BRAHMS RHIC STAR BES-I

D. Kharzeev, Physics Letters B 378, 238 (1996)

Baryon stopping and string junction

3/14

 $lpha_j=0.42 < 0.61 < lpha_j=1$ D. Kharzeev, Physics Letters B 378, 238 (1996)

Insight from the isobar collisions at RHIC

Isobar Runs: Same number of nucleon A, different number of protons Z

Allow for precise measurement of electric charge at mid-rapidity via double ratios!

Charge conservation at mid-rapidity:

967r

Insight from the isobar collisions at RHIC

 ${}^{96}{
m R}\upsilon$

STAR Preliminary

Isobar (Ru + Ru, Zr + Zr)

Isobar Runs: Same number of nucleon A, different number of protons Z

Allow for precise measurement of electric charge at mid-rapidity via double ratios!

Charge conservation at mid-rapidity:

2.2

96**7**.

Insight from the isobar collisions at RHIC

Isobar Runs: Same number of nucleon A, different number of protons Z

Allow for precise measurement of electric charge at mid-rapidity via double ratios!

Charge conservation at mid-rapidity:

Is this a sign of the string junction ?

967

J. D. Brandenburg, N. Lewis for STAR collaboration , in prep

The iEBE-MUSIC framework

Open source hydrodynamics + hadronic transport hybrid framework

https://github.com/chunshen1987/iEBE-MUSIC

5/14

Open source hydrodynamics + hadronic transport hybrid framework

https://github.com/chunshen1987/iEBE-MUSIC

Initial conditions from the string junction 1/2

Initial distributions and choice of wounded nucleons:

Nucleon distribution: Wood-Saxon potential Allow for **neutron skin** parameterization

Parton distribution: Gaussian profile in the nucleon momentum fraction using NPDFs

Choice of binary collisions: MC-Glauber

Energy, momentum and charge deposition:

Energy-momentum: string deceleration

Baryon/electric charge densities: valence quarks + string junction

$$P(y_{P/T}^X) = (1 - \lambda_X) y_{P/T} + \lambda_X rac{e^{(y_{P/T}^X - (y_P + y_T)/2)/2}}{4\sinh((y_P - y_T)/4)}$$

 $X = B, Q$
C. Shen and B. Schenke Phys. Rev. C **105**, 064905 (202
GP, A. Monnai, B. Schencke, C. Shen in Pro-

6/14

Initial conditions from the string junction 2/2

Initial electric charge density rapidity distributions for different values of λ_Q

7/14

Initial baryon and electric charge density rapidity distributions for isobar runs at $\sqrt{s_{
m NN}}=200~{
m GeV}$

Impact of the hydrodynamic evolution on the initial B to Q stoppings ratio?

 $ho_Q\simeq 0.4
ho_B$

MUSIC with 4D equation of state

Impact of the hydrodynamic evolution on the initial B to Q stoppings ratio?

 $ho_Q\simeq 0.4
ho_B$

Not possible with this fixed constraint!

MUSIC with 4D equation of state

Impact of the hydrodynamic evolution on the initial B to Q stoppings :

Independent ideal evolution of conserved charges X = B, Q, S

$${j}^{\mu}_{X}=
ho_{X}u^{\mu}$$

GP, C. Shen, A. Monnai and B. Schenke in prep

B to Q stopping ratio can be studied!

- In-line: NEOS 4D equation of state
 - Based on Lattice Taylor expansion at finite chemical potentials and matched to HRG at smaller temperature.
 - No assumptions on the relation between conserved charge densities.

A. Monnai, B. Schenke and C.Shen Phys. Rev. C 100, 024907

PT spectra for isobar runs at RHIC

9/14

Comparison to STAR yields: Baryon number

- From initial stage to final stage
 - Same shape
 - Net-baryon yield is increased
- Deviation from STAR yield
 - Net-baryon number in iEBE-MUSIC

$$N_B = N_p - N_{ar p} + N_n - N_{ar n}$$

• Net-baryon number at STAR

$$N_B\simeq N_p-N_{ar p}+ar p\sqrt{rac{d}{ar d}}-p\sqrt{rac{d}{ar d}}$$

Evaluation of net-neutron using deuterons STAR Collaboration, PhysRevC.99.064905

Comparison to STAR yields: ΔQ at initial stage

➤ Cases:

- \circ Equal stopping: $\lambda_Q = \lambda_B = 0.2$
- Half stopping:

 $\lambda_Q = \lambda_B/2 = 0.1$

 \circ No neutron skin $\lambda_Q=0.1$

	А	Z	da	dR
Ru	96	44	0.01	0.015
Zr	96	40	0.05	0.1

- > ΔQ needs many events! \circ Net electric charge definition $N_Q = N_p - N_{ar p} + N_{K^+} - N_{K^-} + N_{\pi^+} - N_{\pi^-}$
 - Electric charge difference!

$$\Delta Q = N_{Q,\mathrm{Ru}} - N_{Q,\mathrm{Zr}}$$

11/14

Ratio at initial stage

At initial stage

- \succ Equal stopping $\lambda_Q = \lambda_B = 0.2$
- Largely underestimate the experimental ratio
- ratio < 1 for smaller Npart.
- Overall increase with Npart: Neutron skin
- \succ Half stopping $\lambda_Q = \lambda_B/2 = 0.1$
- Closer to experimental data
- Overall increase with Npart: Neutron skin
- \succ No neutron skin $\lambda_Q=0.1$
- Flat for a large range of Npart
- Cannot account for increasing behavior of the data

Comparison with STAR data at initial stage advocates for a difference in baryon to electric charge stopping ratio!

Ratio at final stage

At final stage

- \succ Equal stopping $\lambda_Q = \lambda_B = 0.2$
- Largely underestimate the experimental ratio
- ratio < 1.
- oscillatory behavior: remains to be understood
- \succ Half stopping $\lambda_Q = \lambda_B/2 = 0.1$
 - Compatible with experimental data
- slightly smaller λ_Q may match data!
- \succ No neutron skin $\lambda_Q=0.1$
- Flat for a large range of Npart
- Cannot account for increasing behavior of the data

Comparison with STAR data at final stage advocates for a difference in baryon to electric charge stopping ratio!

Wrap up & outlook

- "Can gluon junction trace the baryon number?"
 - Clear difference in baryon and electric charge stopping at STAR
 - Results: compatible for half-stopping with STAR data!
 - The ratio observable is sensitive to the neutron skin: Nuclear structure?

The iEBE-MUSIC framework:

- 4D EoS in MUSIC
- Decoupled Net-B and Net-Q densitities evolution: study of **neutron rich nucleus collisions!**
- Short term: tuning on isobars
- Long term: diffusion for conserved charge

Thank you for your attention!

backup

Backup: B and ΔQ proxies at STAR

Net-baryon number:

Net-charge difference:

STAR does not measures neutrons, Evaluation of neutrons from deuterons yields via HRG model

$$N_B = (N_p - N_{ar p}) + (N_n - N_{ar n}) pprox (N_p - N_{ar p}) + ar p \sqrt{rac{d}{ar d}} - p \sqrt{rac{d}{ar d}}$$
STAR Collaboration, Phys Rev.99.064905

The electric charge is a non-trivial measurement at mid-rapidity (small yields!).

Making use of the convenient double ratios to cancel uncertainties accessible in isobars collisions.

 $\Delta Q = [(N_{\pi}^+ + N_K^+ + N_p) - (N_{\pi}^- + N_K^- + N_{ar p})]_{
m Ru} - []_{
m Zr}$

$$R2_{\pi} = rac{(N_{\pi}^+/N_{\pi}^-)_{ ext{Ru}}}{(N_{\pi}^+/N_{\pi}^-)_{ ext{Zr}}} pprox 1 + (N_{\pi}^+ - N_{\pi}^-)_{ ext{Ru}} - (N_{\pi}^+ - N_{\pi}^-)_{ ext{Zr}}$$

$$\Delta Q = N_{\pi}(R2_{\pi}-1) + N_{K}(R2_{K}-1) + N_{p}(R2_{p}-1)$$

Backup: Wood-Saxon parameters

 $ho(r, heta)=rac{
ho_0}{1+e^{[r-R(heta,\phi)/a]}}$ $R(heta,\phi) = R_0 [1+eta_2(\cos(\gamma Y_{2,0})+\sin(\gamma Y_{2,2}))+eta_3 Y_{30}+eta_4 Y_{40}]$ b C R β_2 β_3 β_4 dR da а V Ru 0.46 0.523 0.16 0.015 5.09 0.0 0.0 0.01 Zr 5.02 0.52 0.0 0.06 0.2 0.05 0.1 0.0

Backup: MUSIC tuning on PHOBOS Au+Au data

Current version:

Tuned on charged particle rapidity distributions for Au+Au collisions at RHIC PHOBOS

 Overestimate yields at mid-rapidity for most central collision

Overall good agreement

Backup: PT spectra relative difference

Backup: Gluon cloud interpretation

Backup: Geometrical interpretation of ratio(Npart)

