Photon-triggered jets as probes of multistage jet modification

Chathuranga Sirimanna for the JETSCAPE Collaboration Wayne State University

Outline

- ➤ Introduction: JETSCAPE framework and multistage evolution
- ➤ Photon triggered jets
- ➤ Simulating jet evolution with JETSCAPE framework
- Simultaneous description of leading hadron and jet spectrum
- ➤ This study: 5.02 TeV

 - $\Rightarrow \gamma + 2 \text{ jets}$
 - Groomed jets substructure using photon triggered jets
- ➤ Summary

Introduction

- JETSCAPE: General, modular and extensive framework
- Latest version of JETSCAPE publicly available at https://github.com/JETSCAPE/JETSCAPE
- No single model can describe all stages of jet evolution
- Multi-stage jet evolution
 - Different stages depending on the virtuality, Q and energy, E of the partons
- One can customize the framework by using their own modules
- ASCII, Gzip, and HepMC output formats
- Manual (<u>arXiv:1903.07706</u>), JETSCAPE PP19 tune (<u>arXiv:1910.05481</u>), JETSCAPE AA tune (<u>arXiv:2204.01163</u>)

JETSCAPE framework: Multistage Evolution

- Large Q, Large E: Dominated by radiation with few scatterings (DGLAP, HT)
 - ❖ MATTER (Majumder(13), Kordell, Majumder(17), Cao, Majumder(17))

- > Small Q, Large E: Scattering driven emission, mostly by medium effects (Transport, AMY, HT)
 - LBT (Wang, Zhu(13), Luo, et al.(15,18),Cao, et al.(16,17), He, et al.(18))
 - ❖ MARTINI (Schenke, Gale, Jeon(09), Park, Jeon, Gale(17, 18))

- Small Q & E: Nearly thermal, strongly coupled (AdS/CFT)
 - AdS/CFT (Chesler, Rajagopal(14, 15), Pablos, et al.(15, 16, 17), and others)

Virtuality Separation Scale: Q₀

Switching between modules parton by parton depending on the virtuality and energy

Large Q: $Q > Q_0$ Small Q: $Q < Q_0$

Prompt photons as Probes of QGP

- Prompt photons produced directly in the hard subprocesses
- Can be used to estimate the energy and the direction of jet initiating parton (before the energy loss) – Calibrated probe of the QGP
 - Limited Statistics: Challenging to measure experimentally
- Important probe to study jet energy loss (Wang, Huang, and Sarcevic, PRL 77 (1996) 231-234)
- Isolation criteria is necessary to identify the prompt photons
 - Same isolation criteria used in experimental analysis (CMS-HIN-13-006, CMS-HIN-16-002, PLB 789 (2019) 167)
- Isolated photons mainly consist of prompt photons
 - Isolated Non-prompt photons make considerable contribution

Simulating Jet Evolution

- p-p baseline: Pythia for hard scattering and MATTER for shower
- PbPb:
 - ightharpoonup Virtuality separation scale, $Q_0 = 2 \text{ GeV}$
 - MATTER+LBT with recoil
 - Colorless hadronization (color is randomly assigned) with Pythia Lund String model
 - Event by event hydro
- p-p and PbPb:
 - Prompt photons, photons from intermediate shower and fragmentation photons
 - Same isolation criteria used in experimental analysis

Simultaneous Description of Leading Hadrons and Jets

- Parameters tuned for simultaneously describe leading hadron and jet spectra
 - Solution Blue line of each plot: $Q_{sw}=2~GeV$, $\alpha_s^{fix}=0.3$, $\tau_0=0.6~fm/c$, and $T_c=160~MeV$
 - ❖ AA22 tune
- Not tuned using Bayesian calibration
 - See the talks by Andi Mankolli and Raymond Ehlers for more details of Bayesian calibration
- Same tune can be used to accurately describe number of different observables (Different E_{CM} , centrality, etc.)
- JETSCAPE AA paper: Phys.Rev.C 107 (2023) 3, 034911, arXiv: 2204.01163
 - Further information on parameter tuning

Simultaneous Description of Leading Hadrons and Jets

- Parameters tuned for simultaneously describe leading hadron and jet spectra
 - Solution Blue line of each plot: $Q_{sw}=2~GeV$, $\alpha_s^{fix}=0.3$, $\tau_0=0.6~fm/c$, and $T_c=160~MeV$
 - AA22 tune
- Not tuned using Bayesian calibration
 - See the talks by Andi Mankolli and Raymond Ehlers for more details of Bayesian calibration
- Same tune can be used to accurately describe number of different observables (Different E_{CM} , centrality, etc.)
- JETSCAPE AA paper: Phys.Rev.C 107 (2023) 3, 034911, arXiv: 2204.01163
 - > Further information on parameter tuning

γ-jet Asymmetry – p-p

- $ightharpoonup \gamma$ -jet Asymmetry: $X_{J\gamma} = \frac{p_T^{Jet}}{p_T^{\gamma}}$
- > 5.02 TeV p-p: Full Events and Prompt Photon Events
 - $p_T^{jet} > 31.6 \; GeV; \quad \left| \eta_\gamma \right| < 2.37 \; \text{(excluding the region } 1.37 < \left| \eta_\gamma \right| < 1.52); \quad R = 0.4, \left| \eta_{Jet} \right| < 2.8, \left| \Delta \phi \right| > \frac{7\pi}{8}$
 - Isolation cut (E < 3 GeV) $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.3$
- p-p simulation using JETSCAPE PP19 tune
- > Full events: Have better description with relatively large error bars

ATLAS [PLB 789, 167-190 (2019)]

γ-jet Asymmetry – Central PbPb

- 5.02 TeV PbPb: Full Events and Prompt Photon Events
 - $p_T^{jet} > 31.6 \; GeV$; $|\eta_{\gamma}| < 2.37$ (excluding the region $1.37 < |\eta_{\gamma}| < 1.52$); $R = 0.4, |\eta_{Jet}| < 2.8, |\Delta \phi| > \frac{7\pi}{8}$
 - Isolation cut (E < 8 GeV) $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.3$
- Unfolded experimental results
- > Full events: Have better description with relatively large error bars

ATLAS [PLB 789, 167-190 (2019)]

γ-jet Asymmetry – p-p and Central PbPb

- > 5.02 TeV: Full Events and Prompt Photon Events
 - $p_T^{jet} > 30 \text{ GeV}, |\eta_{\gamma}| < 1.44, R = 0.3, |\eta_{jet}| < 1.6, |\Delta \phi| > \frac{7\pi}{8}$
 - Isolation cut (E < 5 GeV) $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.4$
- Full events: Have better description with large error bars
- Same JETSCAPE Events
- \triangleright Smeared jet p_T (p-p and PbPb)

CMS [PLB 785, 14-39 (2018)]

γ-jet Asymmetry – Peripheral Smeared p-p

- > 5.02 TeV p-p: Full Events and Prompt Photon Events
 - $p_T^{jet} > 30 \text{ GeV}, |\eta_{\gamma}| < 1.44, R = 0.3, |\eta_{jet}| < 1.6, |\Delta \phi| > \frac{7\pi}{8}$
 - Isolation cut (E < 5 GeV) $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.4$
- > Full events: Have better description with large error bars

- Ratio plots: Shows large deviation at large $X_{J\gamma}$
 - Wide angle photon radiation after initial hard scattering

CMS [PLB 785, 14-39 (2018)]

γ-jet Asymmetry – Peripheral PbPb

- 5.02 TeV PbPb: Prompt Photon Events only
 - $p_T^{jet} > 31.6 \ GeV; \quad \left| \eta_\gamma \right| < 2.37 \ (excluding the region 1.37 < \left| \eta_\gamma \right| < 1.52); \quad R = 0.4, \left| \eta_{Jet} \right| < 2.8, \left| \Delta \phi \right| > \frac{7\pi}{8}$
 - Isolation cut (E < 8 GeV) $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.3$
- Deviated from experimental results: May be fixed by using full events
 - Similar behavior can be seen in the central events

ATLAS [PLB 789, 167-190 (2019)]

γ +2 jets

- \triangleright Same Isolation criteria as γ -triggered single jet analysis
- ightharpoonup PbPb/pp ratio for all three observables have good agreement
- Multiplicative factor of 1.4 separately improves Pb-Pb and p-p
- Tension with models (without multiplicative factor)
- Possible role of NLO effects

ATLAS Preliminary
[ATLAS-CONF-2023-008]

Groomed Jet Substructure with γ -triggered jets

- \triangleright z_q : energy imbalance of its hardest splitting
- \succ r_g : angular separation of its hardest splitting
- \triangleright Doesn't show significant dependence on $X_{J\gamma}$
- \succ Only a slight signal of broadening of the splitting can be seen in r_g

Summary and Future Directions

- JETSCAPE framework: General, Modular, Extensive framework uses Multistage evolution
 - Simultaneously describe most of the observables by using the same set of parameters for different center of mass energies and centralities
- > Photon observables an independent, parameter free verification of the multistage evolution
- Using the prompt photon events from hard scattering might not be sufficient
 - Prompt photon events are rare: Computer intensive simulation
 - > Full events shows a better description of all results with relatively large error bars
 - > Isolated Non-prompt photons make considerable contribution
- Further studies needed to understand $\gamma+2$ jets
- \triangleright Groomed Jet substructure doesn't show significant dependence to $X_{J\gamma}$
- > Full event analysis for both central and peripheral PbPb events
- Include more physics in our simulations

The JETSCAPE Collaboration

- Presentations from JETSCAPE collaboration
 - Raymond Ehlers: Measuring jet quenching with a Bayesian Inference analysis of hadron and jet data by JETSCAPE (ID # 525, in track "Small Systems", Tuesday 3.50 pm)
 - Andi Mankolli: Rapidity-dependent dynamics of the initial state via 3D multi-system Bayesian calibration (ID # 526, in track "Collective Dynamics", Tuesday 8.50 pm)
 - Cameron Parker: Hybrid Hadronization of Jet Showers in Vacuum with JETSCAPE (ID # 531, in track "Jets", Poster)
 - Abhijit Majumder: The evolution of jets and high-pT probes in small collisions systems using a multistage framework (ID # 529, in track "Small Systems", Poster)

