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Why do we care about parton showers?

* Parton showers in vacuum vs
medium
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Why do we care about parton showers?

* Parton showers in vacuum vs
medium
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* Medium properties probed by
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Why do we care about parton showers?
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* Parton showers in vacuum vs
medium

* Medium properties probed by
jet quenching

* Time-ordered picture needed
for medium interface

Is jet quenching sensitive to the
ordering of vacuum-like
splittings?



First, a look at vacuum showers



Building differently ordered cascades

C v d
No-emission probability: A(Sprev. S) = exp{ . / " / z }
Zeut (1)

Splitting variables:
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Building differently ordered cascades

C v d
No-emission probability: A(Sprev, 5) = exp{ o / n / z }
Zcut(u')

Interpretations for the scale: Splitting variables:
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Building differently ordered cascades

aCr [ d
No-emission probability: A(Sprev, S) = exp { R / Bl / }
Zcut(l-l') z
Interpretations for the scale: To generate a splitting:
2 ) zE
P
c p2 _ ‘ rell ; /

(Virtuality) Z(l o Z) E

> Iprel =(1-2)k —zq
y > p=k+gq \\
p p
5—>tf = = = Prel q\* (1-2)E

om  E  Ez(1-2)

P2 1. Sample a scale from A(Sprev, S)

(Formation time)

(Afglj (= Ezz(l _ Z) 2. Sample a fraction from ,5(2) x1/z

Ensure that |p.o|° > A\° 3



Building differently ordered cascades

L . aCg [ d
No-emission probability: A(Sprev, S) = exp { / s / }
Zcut(l-l') z
Interpretations for the scale: To generate a splitting:
2 |prel|2 K zE A
s — p? = / 1. Sample a scale from A(Sprev, S)
(Virtuality) Z(l _Z) p 2> Sample a fraction -
irtuali E — . ple a fraction from P(z) o 1/z
p2 1Dret|? < Tprel =(1-2)k-za  Ensure that |p,|* > N>
* 2 tam = E = E2(1 - 2) PR \\\
(Formation time) ) q (1-2)E
s— (= P

(Angle) E22(1 — Z)

a1 Py 2 Pz 34884 p,o 5 This results in the strong
ordering of scales
> > > >

ST > S > S3 - 4




Parton Shower Details T e

° ° L] L] C d
No-emission probability: A(Sprev, S) = eXp{ —~ / M/ z }
Zeut (W)




Parton Shower Details vl

° ° oge aC e d
No-emission probability: A(Sprev, S) = eXp{ —= / - / z }
Zcut(/J')

« Splittings must happen above an hadronisation scale: |pe|? > A

- This provides a soft cutoff: z > Z.u:(s)
/\2

e.g.: Formation time ordering |p.|* > A° <= z(1 — 2) > E

tform



Parton Shower Details vl

° ° oge C e d
No-emission probability: A(Sprev, S) = eXp{ oK / M/ z }
Zcut(/J')

« Splittings must happen above an hadronisation scale: |pe|? > A

- This provides a soft cutoff: z > Z.u:(s)

/\2
e.g.: Formation time ordering |p.|* > A° <= z(1 — 2) > T
form
+ Initialisation condition for the shower: tiom < E Q A«M
————l tform,l

TS ~ 1/Ejet
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Parton Shower Details vl

° ° oge C e d
No-emission probability: A(Sprev, S) = eXp{ oK / M/ z }
Zcut(/J')

» Splittings must happen above an hadronisation scale:  |p|* > A?

- This provides a soft cutoff: z > Z.u:(s)
/\2

e.g.: Formation time ordering |p.|* > A° <= z(1 — 2) > E

tform

* Initialisation condition for the shower: tfgrlm < E

P M
. > :
- For consistency (<4 = |pu| < £
between orderings: “ 2 q\A

(Enforced via retrials)  passless Limit: ¢ ~2(1 — cos) -




Results (Work in Progress)



Differences in Ordering Choices

Counts / Total Events

Splittings along the quark branch
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Quark Branch Splittings

Different orderings — Different

phase-space for allowed splittings

The strictly decreasing scale is
different for the three algorithms




Differences in Ordering Choices

Counts / Total Events

Splittings along the quark branch
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Lund Plane Densities e e

Consider the shower evolution along the quark branch:

4 o 10
Splitting 1 Ej, = 1000 GeV Boundaries in the Lund Plane: =
5 1 GeV/e < [pol S
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Lund Plane Densities e e

Consider the shower evolution along the quark branch:

4 . 10~
Splitting 1 Ej, = 1000 GeV Boundaries in the Lund Plane: =
9 ! 1 GeV/e < [pyg §
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Lund Plane Densities e e

Consider the shower evolution along the quark branch:

1 o 10~
Splitting 1 Ej, = 1000 GeV Boundaries in the Lund Plane: =
5] 1 GeV/e < |pyl S

1 0 . .
! ¢<4 | -Hadronisation cutoff: |Preil > 1GeV/c =
— | @ ! ft;:m ordering =
DI -
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g - Energy conservation: z <1 =
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Lund Plane Densities e e

Consider the shower evolution along the quark branch:

4 . 102
Splitting 1 Ej, = 1000 GeV Boundaries in the Lund Plane: =
3] IR 1 GeV/e < |pyal S
(<4 - Hadronisation cutoff: ’prel‘ > 1GeV/C ~
— | 2\22_ ft;:m ordering T—‘ad
o . 1074 (2
2 - Energy conservation: z <1 =
]_' N 2 E
™ - Angular cutoff: ( = Pre < 4 %
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Lund Plane Densities e e

Consider the shower evolution along the quark branch:

4 1072
Splitting 1 Eior = 1000 GeV splitting 2 splitting 3 a
5] 1 GeV/e < [py| S
(<4 ]
— | @ 9. f;im ordering EB
i 10 &
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S
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07 O
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0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
lOg ‘prel‘ log |prel| log ‘prel|
' Gev /e 0 GeV /e ' Gev /e

Shower evolution: Transverse momentum decreases, momentum fraction increases.
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Inversions in Kinematic Variables

(~ 30% Events with time inversions)

Counts / Total Events
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Location of first tg,,, inversion in quark branch
Formation Time Inversions:
Splittings with a formation time shorter

that their immediate predecessor.




Inversions in Kinematic Variables

109

1071<

Counts / Total Events
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Splittings with a formation time shorter
that their immediate predecessor.

(~ 30% Events with time inversions)
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Angular inversions
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Inversions in Kinematic Variables

Counts / Total Events

(~ 30% Events with time inversions) (~ 20% Events with  inversions)
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Splittings with a formation time shorter Can this discrepancy translate into
that their immediate predecessor. differences in quenching magnitude?
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Now, a simple quenching model!



Choosing a quenching condition

Transverse distance between daughters:

Counts / Total Events
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Choosing a quenching condition

Transverse distance between daughters:

10°

10—1.

Counts / Total Events
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Choosing a quenching condition

10°
Ejet = 1000 GeV — tiomm
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Transverse distance between daughters:

1
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* A simplistic model: eliminate event if
1 (Decoherence)
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v qL

Two implementations:
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50 ° Option 1: Apply only to first splitting
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Choosing a quenching condition

10°
Ejet = 1000 GeV — tiomm
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1
T . \/E Lform

|rsplit‘ —
|prel|
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Two implementations:
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* Option 2: Apply to whole quark branch
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Choosing a quenchmg condition

Counts / Total Events
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Fraction of Quenched Events

Percentage of events eliminated by the quenching condition

A

L =10fm

q= lGeVQ/fm_

L =5fm

q= lGeVQ/fm_

L =1fm

q= 3Ge\f’2/fmi

Ejor = 1000 GeV

1 GE‘\’T/C < Iprell
¢ <4 22 p* (1* splitting)

B !

form

Brick/Sharp ¢ (15 splitting)
All events
1 Full shower

(1% splitting)

Increasing 0
quenching effects

30 40 50 60

uenched/Nvacuum ((ZJ)
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Fraction of Quenched Events %I ffffff —

Percentage of events eliminated by the quenching condition

A
| Applying conditon to the first
L =10fm ep s e . .« fo .
i 1GeV? /i) 2 | §p||tt|ng —> Significant dlffergnces
\ | in quenching between algorithms

L =5fm - | |
¢ =1GeV?/fm - | Differences are washed out when

B =100 GeV e 41 (15 splitting) applying the condition to the full

1 GeV/e < |pyy|
L =1fm | - 14 D2 [lst splitting) qual’k bra nCh.

% | :
¢ =3GeV? /fm S | Brick/Sharp ¢ (1% splitting)
All events
1 Full shower

Increasing 0 10 20 30 40 50 60 70

quenching effects Arquonchod/]\'r\-'acuum (%‘)



Fraction of Quenched Events %I wwwwww —

Percentage of events eliminated by the quenching condition

A
| Applying conditon to the first
L =10fm eaae . . e .
i 1GeV /] % | splitting — Significant differences
\ | in quenching between algorithms
L =5fm 7 | |
¢ =1GeV?/fm - | Differences are washed out when
Eju /woo |Go\«; EEE 41 (17 splitting) applying the condition to the full
1 GeV/e < |py
L =1fm - | | ¢ < 14 p? (1% splitting) qual’k bra nCh.
G = 3CeV2/fm S | Brick/Sharp ¢ (1% splitting)
All events
| | | ) Fullshowe What role do time-inversions play
Increasing 0 10 20 i 30 i —10 . 50 60 70 M ° M 7
qenening effects Noseniat/Nesconm (%) in these quenching differences:
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A

Fraction of Quenched Events

Discarding time-inverted events from the samples:

(Ad-hoc ‘cut’)

L =10fm

g = 1GeV2/fm’

L =5fm

q = IGeVQ/fmi

L=1fm
G = 3GeV?/fm

Increasing

quenching effects

4 |
N
|
% |
N
Bjet = 1000 GeV - gy to L (1% splitting)
2 HGeV/e < Il
P 2 St - 0
¢ <4 Bz p* (17 splitting)
Brick/Sharp =y ¢ (1% splitting)
m No time inversions
[ 1 Full shower
10 20 30 40 50 60 70

Nquenched/Nvacuum ((](’))

Resolved Not Resolved

*** All events with at least one
time-inverted splitting are
removed before applying the
quenching model
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A

Fraction of Quenched Events - —<

Discarding time-inverted events from the samples:

(Ad-hoc ‘cut’)

L =10fm

g = 1GeV2/fm’

L =5fm

q = IGeVQ/fmi

L=1fm

g = SGeVQ/fm_

By = 1000 GeV
1 GE‘V/C < Iprell
(<4
Brick/Sharp

g L (1% splitting)
777771 p* (1% splitting)

B ¢ (1% splitting)

No time inversions

[ 1 Full shower

Increasing
quenching effects

20

30 10

50 60 70

Nquenched/Nvacuum ((](’))

Resolved Not Resolved

*** All events with at least one
time-inverted splitting are
removed before applying the
quenching model

For angular ordered showers:
—=> ( decreases faster than t;_
—> | Fspiit| can increase
—> Sample more resilient to quenching

1L

Pl ik

|rsplit| -
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A

Fraction of Quenched Events - —<

Discarding time-inverted events from the samples:

(Ad-hoc ‘cut’)

B2 tfgjm (1% splitting)
7777) p* (1 splitting)

B ¢ (1% splitting)

[ 1 Full shower

L =10fm -
G =1GeV?/ fm |
N
L =5tm |
G =1GeV?/ fm | Z |
N |
Eje; = 1000 GeV

5 E— 1 GoVe < [pal
L =1tm - <4
G = 3GeV? /fim - Brick/Sharp

E No time inversions

0 10 20 30 40

Increasing
quenching effects

50 60 70

i;,\"‘vquvnrhod/-Z\"r\-'aruum ((Z) )

Resolved Not Resolved

*** All events with at least one
time-inverted splitting are
removed before applying the
quenching model

For angular ordered showers:
—=> ( decreases faster than t;_
—> | Fspiit| can increase
—> Sample more resilient to quenching

1L

Pl ik

|rsplit| -

This is only one way of preventing inversions!
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Fraction of Quenched Events

Vetoing the time-inversions by retrial:

Not Resolved

Resolved

Phase-space is adjusted splitting by splittin . . ceat
A ( pace Is adjusted splitting by splitting) *** Time-inverted splittings are
) | . . .
L=10fm | - | re-tried while generating the
i = 1GeV?2/f
4=1GeV/im S | shower
L =5fm |
qulGeVQ/fmi ) |
N |
f‘jg :T/IOT ;E‘\] B tf;_lm (1% splitting)
eV /C rel
L=1fm E— C<4 p? (1%¢ splitting)
G = 3GeV?/fm e i Brick/Sharp stoanlifts
=YY — — B ¢ (1% splitting)
. T e\.,én,.ﬁs [ 1 Full shower
0 10 20 30 10 50 60 70
Nquenched/Nvacuum ((](’))
Increasing

quenching effects



Fraction of Quenched Events

Vetoing the time-inversions by retrial:

Resolved Not Resolved

(Phase-space is adjusted splitting by splitting) *kk T . s
A | Time-inverted splittings are
L=10fm - | re-tried while generating the
G = 1GeV?/fm h
N | snower
- || Fraction of quenched events
i = 1GeV? /fm i
a4 =16Vt Y | remains levelled across
fﬁf ;/wOOIGe\; EEE 4l (1 splitting) algorithms for the ‘Full Branch'’
TCV/C < | Prel o e
L=1fm i I C<4 p? (1%¢ splitting) CondItIOn
G =3GeV? /fm_ Brick/Sharp =y ¢ (1% splitting)
MY | Time inversions vetoed b ¢ H .
1 Full showar Warning: Phase-space altered
0 10 20 30 10 50 60 70 splitting-by-splitting
Nquenched/Nvacuum ((](’))
Increasing

quenching effects



A

Fraction of Quenched Events - —<

Vetoing the time-inversions by retrial:

(Phase-space is adjusted splitting by splitting)
L =10fm |
q”zlGeVQ/fm’ Z. |
N |
L =5fm |
qulGeVQ/fmi 2 |
N |
Ej(‘t - 1000 GE‘V m _{/_f;ﬂ]._nl (lst Splittlllg)
2 I 1 GeV/e < [Pl
L=1fm <41 2 p* (1* splitting)
: R — ¢
g =3GeV< /fm - Brick/Sharp  rry ¢ (1% splitting)
\\\\\\- Time inversions vetoed
N 1 Full shower
0 10 20 30 40 50 60

Increasing

Nquenched/Nvacuum ((](’))

quenching effects

The implementation details of the jet interface with a time-evolving medium are crucial!

70

Resolved Not Resolved

*** Time-inverted splittings are
re-tried while generating the
shower

Fraction of quenched events
remains levelled across
algorithms for the ‘Full Branch'’
condition

Warning: Phase-space altered
splitting-by-splitting

17



Summary
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Summary
* A toy Monte Carlo parton shower was developed:

* To explore differences between ordering algorithms.

* Aiming at a framework for time-ordered in-medium emissions.
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Summary
* A toy Monte Carlo parton shower was developed:

* To explore differences between ordering algorithms.
* Aiming at a framework for time-ordered in-medium emissions.

* The details of how jets interface with a time-evolving medium impact
guenching magnitude.

* These models do not incorporate medium dilution, differential energy
loss. Only vacuum-like emissions are incorporated.

* Quenching differences are large for the 1stsplitting & small media -
Important for initial stages and small systems
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Summary
* A toy Monte Carlo parton shower was developed:

* To explore differences between ordering algorithms.
* Aiming at a framework for time-ordered in-medium emissions.

* The details of how jets interface with a time-evolving medium impact
guenching magnitude.

* These models do not incorporate medium dilution, differential energy
loss. Only vacuum-like emissions are incorporated.

* Quenching differences are large for the 1stsplitting & small media -
Important for initial stages and small systems
| ° ’ Thanks!
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Without the consistency condition

10° 100
Bt = 1000 GeV  —— tp) Eiet = 1000 GeV —— tL
10—1_ 1 GeV/C < |prel| - p2 10—1_ 1 Ge\//c < |prel| p2
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= 10 = 104
O QO
10~°] 1075
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tol [GeV /hc] ¢

If the condition < 4 is used simply to initialise the angular shower, the time and
angle distributions do not behave consistently across algorithms
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With the consistency condition

Counts / Total Events
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1072.
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10—4.

10—5.

10—6.

100
Bt = 1000 GeV  —— tp) Eiet = 1000 GeV —— tL
1 GGV/C < |prel| p2 10—1_ 1 Ge\//c < |prel| p2
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Splitting 1 Splitting 1
Z 10724
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é 10734
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o
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0 200 400 600 800 1000 1200 1400 00 05 1.0 1.5 2.0 25 30 35 40 45 50 55 6.0
tol [GeV /hc] ¢

When the condition ( <4 is used as a veto for all emissions, the distributions

become consistent.
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Impact on Lund Plane Densities
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Impact on Lund Plane Densities

1 Splitting 1 1 Splitting 2 1 Splitting 3 Eii = 1000 GeV
1 GGV/C < |prel|
(<4
p? ordering
0o 1 2 6 0 1 2 3 4 5 6 0 1 2 3 4 5
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Mass ordered shower - Vacuum
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Impact on Lund Plane Densities

] |prel|
Oglo(}e\//c

Angular ordered shower - Vacuum

1 Splitting 1 1 Splitting 2 1 Splitting 3 Eii = 1000 GeV
- 1 GGV/C < |prel|
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Impact on Lund Plane Densities
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Impact on Lund Plane Densities
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Impact on Lund Plane Densities
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Impact on Lund Plane Densities
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Impact on Lund Plane Densities
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Impact on Lund Plane Densities
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