Parton cascades at DLA: the role of the evolution variable

André Cordeiro

In collaboration with:
Carlota Andrés, Liliana Apolinário, Nestor Armesto, Fabio Dominguez, Guilherme Milhano

Why do we care about parton showers?

- Parton showers in vacuum vs medium

Why do we care about parton showers?

- Parton showers in vacuum vs medium
- Medium properties probed by jet quenching
- Time-ordered picture needed for medium interface

Why do we care about parton showers?

- Parton showers in vacuum vs medium
- Medium properties probed by jet quenching
- Time-ordered picture needed for medium interface

Is jet quenching sensitive to the ordering of vacuum-like splittings?

First, a look at vacuum showers

Building differently ordered cascades

No-emission probability:

$$
\Delta\left(s_{\text {prev }}, s\right)=\exp \left\{-\frac{\alpha C_{R}}{\pi} \int_{s}^{s_{\text {prev }}} \frac{\mathrm{d} \mu}{\mu} \int_{z_{\text {cut }}(\mu)}^{1} \frac{\mathrm{~d} z}{z}\right\}
$$

Splitting variables:

Building differently ordered cascades

No-emission probability:

$$
\Delta\left(s_{\text {prev }}, s\right)=\exp \left\{-\frac{\alpha C_{R}}{\pi} \int_{s}^{s_{\text {peev }}} \frac{\mathrm{d} \mu}{\mu} \int_{z_{\text {cut }}(\mu)}^{1} \frac{\mathrm{~d} z}{z}\right\}
$$

Interpretations for the scale:

$$
\underset{\text { (Virtuality) }}{s \rightarrow p^{2}}=\frac{\left|\boldsymbol{p}_{\text {rel }}\right|^{2}}{z(1-z)}
$$

$$
\underset{\text { (Formation time) }}{s \rightarrow t_{\text {form }}^{-1}}=\frac{p^{2}}{E}=\frac{\left|\boldsymbol{p}_{\mathrm{rel}}\right|^{2}}{E z(1-z)}
$$

$$
\underset{\text { (Angle) }}{s \rightarrow} \zeta=\frac{p^{2}}{E^{2} z(1-z)}
$$

Splitting variables:

Building differently ordered cascades

No-emission probability:

$$
\Delta\left(s_{\text {prev }}, s\right)=\exp \left\{-\frac{\alpha C_{R}}{\pi} \int_{s}^{s_{\text {prev }}} \frac{\mathrm{d} \mu}{\mu} \int_{z_{\text {cut }}(\mu)}^{1} \frac{\mathrm{~d} z}{z}\right\}
$$

Interpretations for the scale:

$$
\underset{\text { (virtuality) }}{s \rightarrow p^{2}}=\frac{\left|\boldsymbol{p}_{\text {rel }}\right|^{2}}{z(1-z)}
$$

$$
\underset{\substack{\text { (Formation time) }}}{s \rightarrow t_{\mathrm{form}}^{-1}=\frac{p^{2}}{E}=\frac{\left|\boldsymbol{p}_{\mathrm{rel}}\right|^{2}}{E z(1-z)} \text { (1-z }}
$$

$$
\underset{\text { (Angle) }}{s \rightarrow} \zeta=\frac{p^{2}}{E^{2} z(1-z)}
$$

To generate a splitting:

1. Sample a scale from $\Delta\left(s_{\text {prev }}, s\right)$
2. Sample a fraction from $\hat{P}(z) \propto 1 / z$ Ensure that $\left|p_{\text {rel }}\right|^{2}>\Lambda^{2}$

Building differently ordered cascades

$$
\text { No-emission probability: } \quad \Delta\left(s_{\text {prev }}, s\right)=\exp \left\{-\frac{\alpha C_{R}}{\pi} \int_{s}^{s_{\mathrm{prev}}} \frac{\mathrm{~d} \mu}{\mu} \int_{z_{\mathrm{cut}}(\mu)}^{1} \frac{\mathrm{~d} z}{z}\right\}
$$

Interpretations for the scale:
To generate a splitting:

$$
\begin{aligned}
& \underset{\text { (Virtuality) }}{s \rightarrow p^{2}}=\frac{\left|\boldsymbol{p}_{\text {rel }}\right|^{2}}{z(1-z)} \\
& \underset{\text { (Formation time) }}{s \rightarrow t_{\text {form }}^{-1}}=\frac{p^{2}}{E}=\frac{\left|\boldsymbol{p}_{\text {rel }}\right|^{2}}{E z(1-z)}
\end{aligned}
$$

1. Sample a scale from $\Delta\left(s_{\text {prev }}, s\right)$
2. Sample a fraction from $\hat{P}(z) \propto 1 / z$ Ensure that $\left|\boldsymbol{p}_{\text {rel }}\right|^{2}>\Lambda^{2}$

$$
\underset{\text { (Angle) }}{s \rightarrow} \zeta=\frac{p^{2}}{E^{2} z(1-z)}
$$

This results in the strong ordering of scales

Parton Shower Details

No-emission probability:

$$
\Delta\left(s_{\text {prev }}, s\right)=\exp \left\{-\frac{\alpha C_{R}}{\pi} \int_{s}^{s_{\text {prev }}} \frac{\mathrm{d} \mu}{\mu} \int_{z_{\text {cut }}(\mu)}^{1} \frac{\mathrm{~d} z}{z}\right\}
$$

Parton Shower Details

No-emission probability:

$$
\Delta\left(s_{\text {prev }}, s\right)=\exp \left\{-\frac{\alpha C_{R}}{\pi} \int_{s}^{s_{\text {prev }}} \frac{\mathrm{d} \mu}{\mu} \int_{z_{\text {cut }}(\mu)}^{1} \frac{\mathrm{~d} z}{z}\right\}
$$

- Splittings must happen above an hadronisation scale: $\left|\boldsymbol{p}_{\text {rel }}\right|^{2}>\Lambda^{2}$
- This provides a soft cutoff: $\quad z>z_{\text {cut }}(s)$
e.g.: Formation time ordering $\left|\boldsymbol{p}_{\text {rel }}\right|^{2}>\Lambda^{2} \Longleftrightarrow z(1-z)>\frac{\Lambda^{2}}{t_{\text {form }}^{-1} E}$

Parton Shower Details

No-emission probability:

$$
\Delta\left(s_{\text {prev }}, s\right)=\exp \left\{-\frac{\alpha C_{R}}{\pi} \int_{s}^{s_{\text {prev }}} \frac{\mathrm{d} \mu}{\mu} \int_{z_{\text {cut }}(\mu)}^{1} \frac{\mathrm{~d} z}{z}\right\}
$$

- Splittings must happen above an hadronisation scale: $\left|\boldsymbol{p}_{\text {rel }}\right|^{2}>\Lambda^{2}$
- This provides a soft cutoff: $\quad z>z_{\text {cut }}(s)$
e.g.: Formation time ordering $\left|\boldsymbol{p}_{\text {rel }}\right|^{2}>\Lambda^{2} \Longleftrightarrow z(1-z)>\frac{\Lambda^{2}}{t_{\text {form }}^{-1} E}$
- Initialisation condition for the shower: $t_{\text {form }}^{-1}<E$

Parton Shower Details

No-emission probability:

$$
\Delta\left(s_{\text {prev }}, s\right)=\exp \left\{-\frac{\alpha C_{R}}{\pi} \int_{s}^{s_{\text {prev }}} \frac{\mathrm{d} \mu}{\mu} \int_{z_{\mathrm{cut}}(\mu)}^{1} \frac{\mathrm{~d} z}{z}\right\}
$$

- Splittings must happen above an hadronisation scale: $\left|\boldsymbol{p}_{\text {rel }}\right|^{2}>\Lambda^{2}$
- This provides a soft cutoff: $\quad z>z_{\text {cut }}(s)$
e.g.: Formation time ordering $\left|\boldsymbol{p}_{\text {rel }}\right|^{2}>\Lambda^{2} \Longleftrightarrow z(1-z)>\frac{\Lambda^{2}}{t_{\text {form }}^{-1} E}$
- Initialisation condition for the shower: $t_{\text {form }}^{-1}<E$
- For consistency between orderings:

$$
\zeta<4 \Longrightarrow\left|p_{\text {rel }}\right|<\frac{E}{2}
$$

(Enforced via retrials)

Results (Work in Progress)

Differences in Ordering Choices

Splittings along the quark branch

The strictly decreasing scale is different for the three algorithms

Different orderings \rightarrow Different phase-space for allowed splittings

Differences in Ordering Choices .

Splittings along the quark branch

Different orderings \rightarrow Different phase-space for allowed splittings

Relative transverse momentum (1 ${ }^{\text {st }}$ splitting)

Transverse momentum distributions follow $\frac{d p_{\text {rel }}^{2}}{p_{\text {rel }}^{2}}$

Lund Plane Densities

Consider the shower evolution along the quark branch:

Boundaries in the Lund Plane:

Lund Plane Densities

Consider the shower evolution along the quark branch:

Lund Plane Densities

Consider the shower evolution along the quark branch:

Lund Plane Densities

Consider the shower evolution along the quark branch:

Boundaries in the Lund Plane:

- Hadronisation cutoff: $\quad\left|p_{\text {rel }}\right|>1 \mathrm{GeV} / \mathrm{c}$
- Energy conservation: $\quad z \leq 1$
- Angular cutoff: $\zeta=\left(\frac{\left|\boldsymbol{p}_{\text {rel }}\right|}{E z(1-z)}\right)^{2} \leq 4$

$\log _{10} \frac{\left|\boldsymbol{p}_{\text {rel }}\right|}{\mathrm{GeV} / \mathrm{c}}$

Lund Plane Densities

Consider the shower evolution along the quark branch:

Shower evolution: Transverse momentum decreases, momentum fraction increases.

Lund Plane Trajectories

Inversions in Kinematic Variables

Formation Time Inversions:

Splittings with a formation time shorter that their immediate predecessor.

Inversions in Kinematic Variables

Formation Time Inversions:

Splittings with a formation time shorter that their immediate predecessor.

Angular inversions

Inversions in Kinematic Variables

Formation Time Inversions:

Splittings with a formation time shorter that their immediate predecessor.

Angular inversions
Can this discrepancy translate into differences in quenching magnitude?

Now, a simple quenching model!

Choosing a quenching condition

Transverse distance between daughters:

$$
\left|\boldsymbol{r}_{\text {split }}\right|=\frac{1}{\left|\boldsymbol{p}_{\text {rel }}\right|}=\sqrt{\zeta} t_{\text {form }}
$$

Choosing a quenching condition

Resolved
Not Resolved

Transverse distance between daughters:

$$
\left|\boldsymbol{r}_{\text {split }}\right|=\frac{1}{\left|\boldsymbol{p}_{\text {rel }}\right|}=\sqrt{\zeta} t_{\text {form }}
$$

- A simplistic model: eliminate event if

$$
\left|\boldsymbol{r}_{\text {split }}\right|>\frac{1}{\sqrt{\hat{q} L}}=d_{\text {coh }} \text { and } t_{\text {form }}<L
$$

Choosing a quenching condition

Not Resolved

Transverse distance between daughters:

$$
\left|\boldsymbol{r}_{\text {split }}\right|=\frac{1}{\left|\boldsymbol{p}_{\text {rel }}\right|}=\sqrt{\zeta} t_{\text {form }}
$$

- A simplistic model: eliminate event if

$$
\left|\boldsymbol{r}_{\text {split }}\right|>\frac{1}{\sqrt{\hat{q} L}}=d_{\text {coh }} \text { and } t_{\text {form }}<L
$$

Two implementations:

- Option 1: Apply only to first splitting

Choosing a quenching condition

Not Resolved

Transverse distance between daughters:

$$
\left|\boldsymbol{r}_{\text {split }}\right|=\frac{1}{\left|\boldsymbol{p}_{\text {rel }}\right|}=\sqrt{\zeta} t_{\text {form }}
$$

- A simplistic model: eliminate event if

$$
\left|r_{\text {split }}\right|>\frac{1}{\sqrt{\hat{q} L}}=d_{\text {coh }} \text { and } t_{\text {form }}<L
$$

Two implementations:

- Option 1: Apply only to first splitting
- Option 2: Apply to whole quark branch

Choosing a quenching condition

Transverse distance between daughters:

$$
\left|\boldsymbol{r}_{\text {split }}\right|=\frac{1}{\left|\boldsymbol{p}_{\text {rel }}\right|}=\sqrt{\zeta} t_{\text {form }}
$$

- A simplistic model: eliminate event if

$$
\left|r_{\text {split }}\right|>\frac{1}{\sqrt{\hat{q} L}}=d_{\text {coh }} \text { and } t_{\text {form }}<L
$$

Two implementations:

- Option 1: Apply only to first splitting
- Option 2: Apply to whole quark branch

Fraction of Quenched Events

Percentage of events eliminated by the quenching condition

Fraction of Quenched Events

Percentage of events eliminated by the quenching condition

Applying conditon to the first splitting \rightarrow Significant differences in quenching between algorithms

Differences are washed out when applying the condition to the full quark branch.

Fraction of Quenched Events

Percentage of events eliminated by the quenching condition

Applying conditon to the first splitting \rightarrow Significant differences in quenching between algorithms

Differences are washed out when applying the condition to the full quark branch.

What role do time-inversions play in these quenching differences?

Fraction of Quenched Events

Discarding time-inverted events from the samples:

Increasing

quenching effects
*** All events with at least one time-inverted splitting are removed before applying the quenching model

Fraction of Quenched Events

Discarding time-inverted events from the samples:

Increasing

 quenching effects*** All events with at least one time-inverted splitting are removed before applying the quenching model

For angular ordered showers: $\Rightarrow \zeta$ decreases faster than $t_{\text {form }}^{-1}$
$\Rightarrow\left|\boldsymbol{r}_{\text {split }}\right|$ can increase
\Rightarrow Sample more resilient to quenching

$$
\left|\boldsymbol{r}_{\text {split }}\right|=\frac{1}{\left|\boldsymbol{p}_{\text {rel }}\right|}=\frac{\sqrt{\zeta}}{t_{\text {form }}^{-1}}
$$

Fraction of Quenched Events

Discarding time-inverted events from the samples:

*** All events with at least one time-inverted splitting are removed before applying the quenching model

For angular ordered showers: $\Rightarrow \zeta$ decreases faster than $t_{\text {form }}^{-1}$
$\Rightarrow\left|\boldsymbol{r}_{\text {split }}\right|$ can increase
\Rightarrow Sample more resilient to quenching

$$
\left|r_{\text {split }}\right|=\frac{1}{\left|\boldsymbol{p}_{\text {rel }}\right|}=\frac{\sqrt{\zeta}}{t_{\text {form }}^{-1}}
$$

This is only one way of preventing inversions!

Fraction of Quenched Events

Vetoing the time-inversions by retrial:

Increasing
quenching effects
*** Time-inverted splittings are re-tried while generating the shower

Fraction of Quenched Events

Vetoing the time-inversions by retrial:

Fraction of Quenched Events

Vetoing the time-inversions by retrial:

Increasing

quenching effects
The implementation details of the jet interface with a time-evolving medium are crucial!

Summary

Summary

- A toy Monte Carlo parton shower was developed:
- To explore differences between ordering algorithms.
- Aiming at a framework for time-ordered in-medium emissions.

Summary

- A toy Monte Carlo parton shower was developed:
- To explore differences between ordering algorithms.
- Aiming at a framework for time-ordered in-medium emissions.
- The details of how jets interface with a time-evolving medium impact quenching magnitude.
- These models do not incorporate medium dilution, differential energy loss. Only vacuum-like emissions are incorporated.
- Quenching differences are large for the $1^{\text {st }}$ splitting \& small media \rightarrow Important for initial stages and small systems

Summary

- A toy Monte Carlo parton shower was developed:
- To explore differences between ordering algorithms.
- Aiming at a framework for time-ordered in-medium emissions.
- The details of how jets interface with a time-evolving medium impact quenching magnitude.
- These models do not incorporate medium dilution, differential energy loss. Only vacuum-like emissions are incorporated.
- Quenching differences are large for the $1^{\text {st }}$ splitting $\&$ small media \rightarrow Important for initial stages and small systems

Acknowledgements

Fundação para a Ciência e a Tecnologia

Backup Slides

Without the consistency condition

If the condition $\zeta<4$ is used simply to initialise the angular shower, the time and angle distributions do not behave consistently across algorithms

With the consistency condition

When the condition $\zeta<4$ is used as a veto for all emissions, the distributions become consistent.

Impact on Lund Plane Densities

Time ordered shower - Vacuum

Impact on Lund Plane Densities

Mass ordered shower - Vacuum

Impact on Lund Plane Densities

Angular ordered shower - Vacuum

Impact on Lund Plane Densities

Time ordered shower - Medium/Vacuum (First Splitting)

Impact on Lund Plane Densities

Mass ordered shower - Medium/Vacuum (First Splitting)

Impact on Lund Plane Densities

Angular ordered shower - Medium/Vacuum (First Splitting)

Impact on Lund Plane Densities

Time ordered shower - Medium/Vacuum (Full Branch)

Impact on Lund Plane Densities

Mass ordered shower - Medium/Vacuum (Full Branch)

Impact on Lund Plane Densities

Angular ordered shower - Medium/Vacuum (Full Branch)

