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Is jet quenching sensitive to the 
ordering of vacuum-like 

splittings?
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First, a look at vacuum showers
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To generate a splitting:

This results in the strong 
ordering of scales

4 / 
43



  

Parton Shower Details
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Parton Shower Details

● Splittings must happen above an hadronisation scale:

No-emission probability:

- This provides a soft cutoff:

e.g.: Formation time ordering

● Initialisation condition for the shower:

- For consistency 
between orderings:

(Enforced via retrials)
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Results (Work in Progress)
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Lund Plane Densities
Consider the shower evolution along the quark branch:

Boundaries in the Lund Plane:
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Lund Plane Densities
Consider the shower evolution along the quark branch:

Boundaries in the Lund Plane:

- Hadronisation cutoff:

- Energy conservation: 

- Angular cutoff: 

Shower evolution: Transverse momentum decreases, momentum fraction increases.
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Lund Plane Trajectories

Differences between phase-space trajectories
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Inversions in Kinematic Variables

Formation Time Inversions: 
Splittings with a formation time shorter 

that their immediate predecessor.
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Can this discrepancy translate into 
differences in quenching magnitude?

Angular inversions

(~ 30% Events with time inversions) (~ 20% Events with ζ inversions)
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Now, a simple quenching model!
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● A simplistic model: eliminate event if

Transverse distance between daughters:
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● Option 1: Apply only to first splitting 
● Option 2: Apply to whole quark branch

Two implementations:

Consider differently sized 
medium ‘bricks’

L
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Fraction of Quenched Events
Percentage of events eliminated by the quenching condition

Increasing 
quenching effects
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What role do time-inversions play 
in these quenching differences?Increasing 
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Discarding time-inverted events from the samples:

(Ad-hoc ‘cut’) *** All events with at least one 
time-inverted splitting are 

removed before applying the 
quenching model

For angular ordered showers:
      → decreases faster than       
             → can increase 
  → Sample more resilient to quenching

Increasing 
quenching effects

This is only one way of preventing inversions!
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Fraction of Quenched Events
Vetoing the time-inversions by retrial:

(Phase-space is adjusted splitting by splitting) *** Time-inverted splittings are 
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Vetoing the time-inversions by retrial:

(Phase-space is adjusted splitting by splitting) *** Time-inverted splittings are 
re-tried while generating the 

shower

Fraction of quenched events 
remains levelled across 

algorithms for the ‘Full Branch’ 
condition

The implementation details of the jet interface with a time-evolving medium are crucial! 

Warning: Phase-space altered 
splitting-by-splitting
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If the condition ζ < 4 is used simply to initialise the angular shower, the time and 
angle distributions do not behave consistently across algorithms
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When the condition ζ < 4 is used  as a veto for all emissions, the distributions 
become consistent.
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Impact on Lund Plane Densities

Time ordered shower – Medium/Vacuum (First Splitting)

26 / 
43



  

Impact on Lund Plane Densities

Mass ordered shower – Medium/Vacuum (First Splitting)

27 / 
43



  

Impact on Lund Plane Densities

Angular ordered shower – Medium/Vacuum (First Splitting)

28 / 
43



  

Impact on Lund Plane Densities

Time ordered shower – Medium/Vacuum (Full Branch)

29 / 
43



  

Impact on Lund Plane Densities

Mass ordered shower – Medium/Vacuum (Full Branch)

30 / 
43



  

Impact on Lund Plane Densities

Angular ordered shower – Medium/Vacuum (Full Branch)

31 / 
43


	Slide: 0
	Slide: 1 (0)
	Slide: 1 (1)
	Slide: 1 (2)
	Slide: 2
	Slide: 3 (0)
	Slide: 3 (1)
	Slide: 3 (2)
	Slide: 4
	Slide: 5 (0)
	Slide: 5 (1)
	Slide: 5 (2)
	Slide: 5 (3)
	Slide: 6
	Slide: 7
	Slide: 8
	Slide: 9 (0)
	Slide: 9 (1)
	Slide: 9 (2)
	Slide: 9 (3)
	Slide: 9 (4)
	Slide: 10
	Slide: 11 (0)
	Slide: 11 (1)
	Slide: 11 (2)
	Slide: 12
	Slide: 13 (0)
	Slide: 13 (1)
	Slide: 13 (2)
	Slide: 13 (3)
	Slide: 14
	Slide: 15 (0)
	Slide: 15 (1)
	Slide: 15 (2)
	Slide: 16 (0)
	Slide: 16 (1)
	Slide: 16 (2)
	Slide: 17 (0)
	Slide: 17 (1)
	Slide: 17 (2)
	Slide: 18 (0)
	Slide: 18 (1)
	Slide: 18 (2)
	Slide: 18 (3)
	Slide: 19
	Slide: 20
	Slide: 21
	Slide: 22
	Slide: 23
	Slide: 24
	Slide: 25
	Slide: 26
	Slide: 27
	Slide: 28
	Slide: 29
	Slide: 30
	Slide: 31

