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Introduction

(Figure by Steffen A. Bass)

▶ Traditional hydro: Description using macroscopic variables (T , µ, uµ) and their
gradients accompanied by transport coefficients (η, ζ, σ). Should be
distinguished from Israel-Stewart type hydro (ISH) [Muller ’67, Israel, Stewart
’76] where the dissipative fluxes are promoted to independent dynamical degrees
of freedom.

▶ ISH is remarkably successful in describing intermediate stages of heavy-ion
collisions [Heinz et al., Romatschke et al., Dusling and Teaney, Song et al., and
several others].

▶ ISH derived from kinetic theory works even when a fluid is not close to
equilibrium [Heller et al., Romatschke, Strickland, Noronha, and others]. Can
ISH serve as a proxy for kinetic theory in the far-from-equilibrium early stages of
heavy-ion collisions?
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Setup: Non-conformal quark-gluon gas at finite µB

▶ Consider a weakly interacting gas of quarks, anti-quarks, and gluons.

▶ Assume a kinetic description in terms of single-particle distribution
functions, f i (x , p); ‘i ’ denotes species.

▶ Evolution of f i (x , p) governed by Boltzmann equation:

pµi ∂µf
i = C[f i ]

▶ Approximate collisional kernel of the relaxation type [Andersen &

Witting ’74]:

C[f i ] ≈ −u · pi
τR

(
f i − f ieq

)
,

τR is relaxation time for local equilibration, uµ(x) is local fluid
velocity.

▶ feq are given by Fermi-Dirac (for quarks, anti-quarks) or
Bose-Einstein (for gluons) distributions in fluid rest frame. E.g.,

f qeq = [exp (β(u · p)− α)]−1
, whereβ = 1/T , α = µ/T .
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Hydro from kinetic theory [C.C., Heinz, Schäfer, PRC 107 (2023) 4, 044905]

▶ Using f (x , p) one obtains conserved currents of hydro:

Tµν(x) =
∑
i

∫
dPi p

µ
i pνi f i = e uµ uν − (P +Π) ∆µν + πµν ,

Nµ(x) =

∫
dPq p

µ
q

(
f q − f q̄

)
= n uµ + nµ

The viscous stresses stem from δf i ≡ f i − f ieq , and satisfy relaxation-type
equations [Denicol et al. ’12]. For example,

π̇⟨µν⟩ +
πµν

τR
= ∆µν

αβ

3∑
i=1

∫
dPi p

α
i pβi

1

u · pi
pγi ∇i f

i .

▶ We obtained f i up to 2nd-order in velocity gradients (ignoring nµ) by solving
RTA BE perturbatively in the Knudsen number (Kn ∼ τR |∇µuν | ≪ 1):

Π̇ +
Π

τR
= −βΠ θ − δΠΠ Π θ + λΠπ πµν σµν ,

π̇⟨µν⟩ +
πµν

τR
= 2βπ σµν + 2π

⟨µ
γ ων⟩γ − τππ π

⟨µ
γ σν⟩γ

− δππ πµν θ + λπΠ Πσµν ,

where (βΠ, δΠΠ, · · · ) are functions of (T , µ). Standard definitions: θ = ∂µuµ,
velocity stress-tensor σµν = ∇⟨αuβ⟩, vorticity ωµν = (∇µuν − ∇νuµ)/2,
A⟨µν⟩ = ∆

µν
αβ

Aαβ , where ∆
µν
αβ

is a double-symmetric traceless projector
orthogonal to uµ.
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Application: Bjorken flow [J.D. Bjorken, PRD, 27, 140 (1983)]

▶ Bjorken flow is valid during the early stages of ultra-relativistic heavy-ion
collisions. The fluid is assumed to be homogeneous in (x , y)-plane.

▶ The medium expands boost-invariantly along the beam (z−) direction:
v z = z/t. Best described in Milne (expanding) coordinates τ ≡

√
t2 − z2, and

ηs ≡ tanh−1(z/t).

▶ Fluid expansion rate, θ = 1/τ ,
πµν → diag(0, π/2, π/2,−π/τ2),
baryon diffusion vanishes, and
everythings depends only on τ .

▶ Hydro quantities evolve as,

de

dτ
= −

1

τ
(e + P +Π− π) ,

dn

dτ
= −

n

τ
,

dΠ

dτ
+

Π

τR
= −

βΠ

τ
+ · · · ,

dπ

dτ
+

π

τR
=

4

3

βπ

τ
+ · · · .
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Case I: Ideal hydrodynamics

▶ Isentropic evolution =⇒ s ∝ 1/τ where s = (e + P − µn)/T , n ∝ 1/τ such
that entropy per baryon s/n is constant.
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▶ For conformal gas, fixed s/n implies fixed µ/T .

▶ For non-conformal gas (mq = 1 GeV):
▶ At high T, EoS dominated by quarks, anti-quarks, and gluons. At low T,

EoS dominated by quarks.

▶ As T → 0, Fermi statistics of quarks imply µ → mq .

▶ s/n increases from right to left in the phase diagram.
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Case II: Viscous hydrodynamics
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▶ Dissipation substantially shuffles around phase trajectories.

▶ Trajectories with non-negative π0 lie to left of ideal trajectory. Expected:
dissipation produces entropy. ✓

▶ However, trajectories with negative π0 move to the right for some time. But
entropy should not decrease! Similar behavior first observed by Travis Dore et
al. [PRD 102 (2020), 074017, PRD 106 (2022) 9, 094024] in a more complex setting:
second-order hydro with Lattice QCD based EoS used to study critical dynamics.

▶ Is hydro breaking down for these far-off-equilibrium initial conditions?
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Resolution

▶ Statement of the second law: ∂µS
µ ≥ 0.

▶ Thus far we have assumed Sµ = seq u
µ with seq = (e + P − µn)/T .

▶ But is it justified when the system deviates substantially from local
equilibrium?

▶ Need an expression for non-equilibrium entropy.
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Non-equilibrium entropy current

▶ Start from Boltzmann’s H-function,

Sµ = −
∑
i

gi

∫
dPi p

µ
i ϕi [f

i ],

The functions ϕi [f
i ] are given as,

ϕi [f
i ] = f i ln f i − 1 + ai f

i

ai
ln(1 + ai f

i ),

with a1 = a2 = −1 (Fermi-Dirac) and a3 = 1 (Bose-Einstein).

▶ Writing f i = f ieq + δf i , and expand to second-order in δf i :

Sµ = seq u
µ − α nµ − β

4βπ
uµ παβ παβ + cnn u

µ nα nα + cnπ π
µα nα.

The coefficients (βπ, cnn, cnπ) are derived for a massless QG-gas in
PRC 107 (2023) 4, 044905 [C.C., Heinz, Schäfer].
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Second law in conformal hydrodynamics [C.C., Heinz, Schäfer, ’23]
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▶ Once second-order corrections are included, trajectories with same (T0, µ0) but
different π0, start with different stot/n < seq/n:

stot = seq −
3β

8βπ
π2.

▶ For π0 > 0, both the ideal and total entropy per baryon increase.

▶ For trajectory that moves initially to the right, the ideal entropy per baryon
decreases initially. However, this curve starts from a much lower total s/n.

▶ The total entropy per baryon never decreases. Hydro trajectories are consistent
with the second law!
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Viscous cooling! [C.C., Heinz, Schäfer, PRC 107 (2023) 4, 044905]

▶ Usually dissipative fluxes causes viscous heating =⇒ Temperature

falls slower than in ideal evolution.
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▶ However, for trajectories where the ideal entropy per baryon decreases, the
temperature drops faster than even the ideal case.

▶ This happens when the effective longitudinal pressure PL > P =⇒ π − Π < 0
such that,

d(seq/n)

dτ
=

π − Π

τ0 n0 T
< 0.
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Hydro vs kinetic theory

▶ Plenty of room for improvement...
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▶ Substantial difference between second-order hydro and kinetic
theory for non-equilibrium initial conditions.

▶ Perhaps the Knudsen number (perturbative) expansion is not
well-suited for these scenarios.

▶ Need for a ‘non-perturbative’ framework that models both
far-off-equilibrium and hydro regimes with more accuracy.
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Far-off-equilibrium theory using maximum-entropy principle

▶ Recall, conserved curents (Tµν ,Nµ) are moments of f (x , p). For example,

Tµν(x) ≡
∫

dP pµ pν f (x , p) = e uµuν − (P +Π)∆µν + πµν .

For RTA Boltzmann eq., the viscous stresses satisfy relaxation-type evolution
equations. For eg., the exact evolution of Π is [Denicol et al. ’12],

Π̇ +
Π

τR
= −α1 θ + α2 Π θ + α3 π

µν σµν +
m2

3
ρµν
(−2)

σµν

+
m2

3
∇µ ρµ

(−1)
+

m4

9
ρ(−2) θ.

However, the eq. is not closed due to couplings to ρ-tensors.

▶ The ρ-tensors are non-hydrodynamic moments of δf = f − feq:

ρµ
(−1)

≡ ∆µ
α

∫
dP (u · p)−1 pα δf ,

ρµν
(−2)

≡
∫

dP (u · p)−2 p⟨µ pν⟩ δf .

▶ Similar feature exists for shear stress evolution equation. Needs truncation, i.e.,
to express δf in terms of quantities appearing in Tµν .
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A new truncation scheme

▶ Standard truncation schemes: Grad’s 14-moment approximation [Dusling,

Teaney ’08], Chapman-Enskog approximation [Bhalerao, Jaiswal et al. ’14],
anisotropic hydro using Romatschke-Strickland ansatz [Romatschke and

Strickland ’03], fRS ∼ exp
(
−
√

p2
T + (1 + ξ)p2

z/Λ
)
.

▶ Grad assumes δf to be quadratic in momenta (ad-hoc); Chapman-Enskog
δf should not be valid far-from-equilibrium. Both become negative
(unphysical) at large momenta. Resulting hydrodynamics breaks down in
certain flow profiles.

▶ The aHydro ansatz does not become negative and can handle large shear
deformations at early stages of heavy-ion collisions.

▶ But: its form is ad-hoc and custom-built for Bjorken flow (not
general 3-d flow).

▶ We want to implement a truncation scheme that (i) leads to a framework

which may work both near and far from local equilibrium, ii) does not

invoke uncontrolled assumptions about the microscopic physics, and iii)

does not restrict the expansion geometry.
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The ‘least-biased’ distribution [E. Jaynes, Phys. Rev. 106, 620 (1957)]

▶ To truncate the moment-hierarchy of BE, we want to re-construct
an approximate f (x , p) at each time step solely in terms of
quantities appearing in Tµν .

▶ The ‘least-biased’ distribution that uses all of, and only the
information provided by Tµν is one that maximizes the
non-equilibrium entropy,

s[f ] = −
∫

dP (u · p) Φ[f ], Φ[f ] ≡ f ln f − 1 + a f

a
ln(1 + a f ),

a = (−1, 0, 1) for FD, MB, BE statistics,

▶ subject to constraints,∫
dP (u · p)2 f = e, −1

3

∫
dP p⟨µ⟩p

⟨µ⟩ f = P +Π,∫
dP p⟨µpν⟩ f = πµν .

▶ The solution of such an f (x , p) is obtained using δs[f ]/δf = 0, after

including appropriate Lagrange multipliers in s[f ].
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The maximum-entropy distribution

▶ The solution for maximum entropy distribution is,

fME(x , p) =
[
exp

(
Λ
(
u · p

)
− λΠ

u · p p⟨α⟩p
⟨α⟩ +

γ⟨αβ⟩

u · p p⟨αpβ⟩
)
− a

]−1

where (Λ, λΠ, γ
⟨µν⟩) are Lagrange multipliers corresponding to the

information (constraints) provided by hydrodynamics: (e,Π, πµν)

[Derek Everett, C.C., U. Heinz, PRC 103 (2021) 6, 064902].

▶ Features of fME:

▶ Positive-definite for all momenta.

▶ Non-linear dependence on (Π, πµν); exact matching to Tµν for large
range of viscous stresses allowed by kinetic theory.

▶ Reduces to linearized Chapman-Enskog δf of RTA BE for weak dissipative
stresses; yields second-order hydro.

▶ Resulting framework satisfies the second-law of thermodynamics.

▶ Maximum-entropy idea pursued before: in non-relativistic context by Levermore
’96, in neutrino transport in astrophysical context by Murchikova et al. ’17, by
Calzetta et al. ’19 for conformal fluids, and Pradeep & Stephanov ’23 for
freeze-out of critical fluctuations.
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Application I: Bjorken flow [C.C., Heinz, Schäfer, arXiv:2307.10769]
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Application II: Gubser Flow [S.S. Gubser, PRD, 82, 085027 (2010)]

▶ Gubser flow is longitudinally boost-invariant: v z = z/t, and has
uϕ = 0. But it has transverse dynamics: ur (x) ̸= 0.

▶ Re-scale metric, ds2 → dŝ2 = ds2/τ 2, followed by coordinate
transform: (τ, r , ϕ, η) → (ρ, θ, ϕ, η),

ρ = − sinh−1

(
1− q2τ 2 + q2r2

2qτ

)
, θ = tan−1

(
2qr

1 + q2τ 2 − q2r2

)
,

such that ûµ = (1, 0, 0, 0).

Weyl rescaled unitless
quantities,

e(τ, r) =
ê(ρ)

τ 4
,

πµν(τ, r) =
1

τ 2
∂x̂α

∂xµ
∂x̂β

∂xν
π̂αβ(ρ).

Also, π̂µν = diag(0, π̂/2, π̂/2,−π̂).
Du et al. [2019]
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Results: ME-hydro [C.C., Heinz, Schäfer, arXiv:2307.10769]

▶ Evolution of shear inverse Reynolds number and pressure anisotropy

using ME-hydro:
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▶ Rapid transverse expansion in Gubser flow at late times (or large ρ)
prevents system from thermalizing; fluid approaches transverse
free-streaming: P̂T → 0;

▶ ME-hydro correctly describes not only near-equilibrium dynamics but also
longitudinal (ˆ̄π ≈ 0.25) & transverse (ˆ̄π ≈ −0.5) free-streaming domains.
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Conclusions

▶ Derived second-order Israel-Stewart type hydro for a non-conformal quark-gluon
gas at finite µB , undergoing Bjorken flow.

▶ Certain trajectories seemed to violate the second-law of thermodynamics.
Provided a microscopic explanation for this ‘anomalous’ behavior and
established their thermodynamic consistency.

▶ Pointed out a novel effect of viscous cooling associated with such

trajectories.

▶ Derived far-from-equilibrium fluid dynamics from the Boltzmann equation using
a maximum-entropy distribution: ME-hydro.

▶ This scheme does not introduce ad-hoc assumptions about the
microscopic physics or the flow profile being modeled; uses only
information contained within hydro conserved currents.

▶ This framework can be applied to systems of general microscopic dynamics
as long as the constituents admit a description using distribution function.

▶ ME-hydro accurately predicts the kinetic theory evolution of Tµν in both
free-streaming and hydrodynamic regimes for Bjorken and Gubser flows.

▶ The description of Tµν within this approach for flow profiles with less
restrictive symmetries remains to be studied.

Chandrodoy Chattopadhyay Quark Matter 2023 20



Extra slides
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ME-hydro for Bjorken flow [C.C., Heinz, Schäfer, arXiv:2307.10769]

▶ Exact evolution of e, PL = (P +Π− π), and PT = (P +Π+ π/2):

de

dτ
= −e + PL

τ
,

dPL

dτ
= −PL − P

τR
+

ζ̄Lz
τ
,

dPT

dτ
= −PT − P

τR
+

ζ̄⊥z
τ

▶ The couplings ζ̄Lz and ζ̄⊥z involve non-hydro moments:

ζ̄Lz = −3PL +

∫
dP (pτ )−2 p4η f ,

ζ̄⊥z = −PT +
1

2

∫
dP (pτ )−2 p2η p2T f .

▶ To truncate, we set f → fME. This makes ζ̄Lz and ζ̄⊥z functions of
(e,PL,PT ). Now, solve 3 equations for Lagrange multipliers; same
complexity as hydro.
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Breakdown of second-order hydro

▶ Evolution of normalised shear and pressure anisotropy using

second-order CE hydro (identical to Denicol et al. or DNMR):
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▶ Rapid transverse expansion in Gubser flow at late times (or large ρ)
prevents system from thermalizing; fluid approaches transverse
free-streaming : P̂T → 0; not described by second-order hydro.

▶ Second-order CE and DNMR yield negative P̂L and P̂T .
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Breakdown of third-order hydro

▶ Evolution of normalised shear and pressure anisotropy using

third-order CE hydro [C.C., Heinz, et al. ’18]:
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▶ Third-order CE yields incorrect asymptotic value of π̂/(4P̂) ≈ −0.4.

▶ For initialisations π̂/(4P̂) ≲ −0.4, third-order CE equations become

numerically unstable.
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ME-hydro vs anisotropic hydro (in preparation)

▶ Comparison with aHydro, based on truncation distribution

fRS = exp

(
−
√

p̂2T + (1 + ξ̂)p̂2z/T̂RS

)
.
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▶ aHydro is slightly better than ME-hydro. Need testing in more
complicated flow profiles to distinguish between their performances.
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Second law in non-conformal kinetic theory [C.C., Heinz, Schäfer, ’23]

▶ Solved RTA Boltzmann equation
exactly for QG-gas with non-zero
quark masses.

▶ Although seq/n decreases, the total
s/n computed using Boltzmann’s
H-function does not.

▶ 3 distinct regimes of s/n evolution:

▶ early rapid increase of s/n:
expansion driven isotropization,

▶ intermediate plateau where
s/n ≈ const. (free-streaming),

▶ eventual merging with seq/n
(interaction driven).
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