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The equation of state of QCD

From a combination of approaches (experiment, models, lattice QCD calculations, ...),
we have some knowledge of the QCD phase diagram
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The equation of state (EoS) of QCD is invaluable.
Knowing it would mean we can really draw the phase diagram of QCD.
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The equation of state of QCD

e Highly demanded in heavy-ion collisions community, e.g. for hydrodynamics
e Lattice QCD is the most robust tool to determine QCD thermodynamics

e Known at pp = 0 to high precision for a few years now (continuum limit, physical
quark masses) —  Agreement between different calculations (2013-2014)
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WB: Borsanyi+ ’13, HotQCD: Bazavov+ ’14


https://arxiv.org/pdf/1309.5258.pdf
https://arxiv.org/pdf/1407.6387.pdf

Finite density: the sign/complex action problem

Euclidean path integrals on the lattice are calculated with MC methods using importance
sampling, interpreting the factor det M[U]e~5¢[U] as the Boltzmann weight for the
configuration U

Z(V,T, ) = /'DU’D?&'D@ e~ Sr(U,¥)=8a(U)
= /DU det M (U)e~ %)

e If there is particle-antiparticle-symmetry (= 0) det M (U) is real
e For real chemical potential (u? > 0) — det M (U) is complex (complex action
problem) and has wildly oscillating phase (sign problem)

= It cannot serve as a statistical weight

e For purely imaginary chemical potential (u? < 0) — det M (U) is real again,

simulations can be made!
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Alternatives: Taylor, analytic

Taylor expansion (1D) Bollweg+ ’22

Approximate reweighting Mondal+ ’21

continuation, reweighting
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Alternative expansion (2D) Borsanyi+ 21, 22 Reweighting Borsanyi+ ’22, C. H. Wong’s talk
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https://arxiv.org/pdf/2212.09043.pdf
https://arxiv.org/pdf/2106.03165.pdf
https://arxiv.org/pdf/2102.06660.pdf
https://arxiv.org/pdf/2202.05574.pdf
https://arxiv.org/pdf/2208.05398.pdf
https://indico.cern.ch/event/1139644/contributions/5453490/

Motivation: finite yup vs zero up equation of state

As just seen, in recent years a great deal of attention has been given to means to
determine the equation of state at finite chemical potential, with great progress
(see A. Pasztor’s plenary)

However:

i. New results for the equation of state at up = 0 have been produced, but focus is now
on cosmology (Borsényi+ ’16, Bazavov+ °17). Around 7. no updates in ~ 10 years

ii. No matter what method is used to extrapolate or directly simulate at finite jip,
the equation of state at up = 0 is always needed

iii. Except for large-ish pup/T 2 2 — 2.5, the equation of state at ug = 0 is (was) the main
source of uncertainty

iv. LHC physics (up ~ 0) is getting more and more precise

Our goal: dramatically reduce the uncertainty on the equation of state at up =0
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https://indico.cern.ch/event/1139644/contributions/5343987/
https://arxiv.org/pdf/1606.07494.pdf
https://arxiv.org/pdf/1710.05024.pdf

Equation of state from the lattice

The pressure cannot be determined directly (not a derivative of In Z wrt to a parameter),
but via an integral of the trace anomaly I(T):
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where the trace anomaly I(T") can be determined directly on the lattice:
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I. Pressure constant

We calculate the integration constant% at a chosen Ty = 185 MeV.
0
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The pressure is determined as an integral in the 0.0045 »:m| 1== 22 22:{ 2823;
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I. Pressure constant

We calculate the integration constant with two settings of the scale, with and without
applying the tree level improvement on the observables — 4x systematics
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For the first time, we have results for up to Ny = 16 which allow us to discard N; = 8 in

the continuum extrapolation. = ~ 2x improvement in uncertainty 8/14




II. Trace anomaly

We determine on our lattices 323x8, 403x10, 483x12, 643x16 the trace anomaly:
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then perform a global continuum extrapolation + spline fit in 7. 9/14



Equation of state at jip =0

Now we have both ingredients to determine the equation of state at up = 0, as shown

previously:

p(T) :p(To)+/T T’ I(T")
T4 T , T 1

From the pressure, the other quantities follow. At pup = 0, normalized quantities O(T):

5= 4;,3(T)+TL;(IT)
€(T) = 3(T) — p(T)
I(T) + 4p(T)

2 A dI(T)
TI(T)+12p(T)+ T 77
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Equation of state at jip =0

We can compare the resulting equation of state at up = 0 to our previous result from 2014
Borsanyi+ ’14
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Note: full systematics analysis still in the making, more statistics coming at N, = 16 11/14



Equation of state at finite [ip

p/m* (T)

We get the equation of state at finite up with our expansion scheme Borsanyi+ 21, ’22.
Here pressure and entropy density up to fip = 3.5 for g = pg = 0:
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A substantial improvement in the error is seen up to pg/T ~2 — 2.5 12/14


https://arxiv.org/pdf/2102.06660.pdf
https://arxiv.org/pdf/2202.05574.pdf

Equation of state at finite [ip

We get the equation of state at finite pp with our expansion scheme Borsanyi+ 21, *22.

p/m* (T)

Here pressure and entropy density up to fip = 3.5 for g =ng = 0:
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https://arxiv.org/pdf/2102.06660.pdf
https://arxiv.org/pdf/2202.05574.pdf

Equation of state at finite [ip: isentropes

We now have isentropic lines at very large pup with small errors = no critical lensing
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e The QCD equation of state at zero and finite chemical potential is highly demanded
in the heavy-ion collisions community, e.g. for hydrodynamic simulations

e Regardless of the method used to calculate the equation of state at finite up, its
up = 0 determination is necessary and independent

e Thanks to our sizeable zero-T program and increased finite-T statistics, we reached
unprecedented precision in the zero-density equation of state

e The precision is also increased at finite pp, up to up/T ~2 — 2.5
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e The QCD equation of state at zero and finite chemical potential is highly demanded
in the heavy-ion collisions community, e.g. for hydrodynamic simulations

e Regardless of the method used to calculate the equation of state at finite up, its
up = 0 determination is necessary and independent

e Thanks to our sizeable zero-T program and increased finite-T statistics, we reached
unprecedented precision in the zero-density equation of state

e The precision is also increased at finite pp, up to up/T ~2 — 2.5
THANK YOU!
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Equation of state at finite [ip

Energy density up to fip = 3.5 with ug =0 and ng =0

20 ,;’ﬁaﬁlo_u;resultsu _I'J'S 0 e 20 E{ai/-r:iu;resmts“ —nS—O ]
—e—i ;,lB/T 25 —e—i ].lB/T—2.5
i i
15 | hero1® . 15 | beTsy
F—e—i pug/T=0.5 R F—e—i pg/T=0.5
E l"-. am=® E .:"--:::
L0t 7 T | L 10 | e e
w =" .-’:s' © sy
- s>
- e - 5 - = =9 1
e 1z’
0 | | | | | | 0 | | | | | |
120 140 160 180 200 220 240 120 140 160 180 200 220 240

T [MeV] T [MeV]



Equation of state from the lattice

Pressure is not determined directly:

p(T)  p(To) /TdT’I(T’)
T4 TE

— . a0 T/4

Trace anomaly is determined directly on the lattice

I(T) dT 5
:(r4) = = N | dB{-sc)p+ ;dmf (s g

with gauge coupling 8 = 6/¢* and fermion masses m.

The gauge action (—sg) and chiral condensates <1/_Jf¢f> require renormalization:

(=sc)r = (—=sa)r — (—s6)y

(s = (Prtor)y — (Bptds),



An alternative approach

From simulations at imaginary pug we observe that xP (7T, ig) at (imaginary) fip appears
to be differing from x¥(T,0) mostly by a rescaling of T
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Lattice QCD at finite up - lor coefficients
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WB: Borsanyi et al. JHEP 10 (2018) 205;
(also e.g., HotQCD: Bazavov et al. PRD101 (2020), 074502)



Taylor expanding a (shifting) sigmoid

Assume we have a sigmoid function f(7') which shifts with /i, with a simple
T-independent shifting parameter k. How does Taylor cope with it?

f(T7 ﬂ):f(T/>O)7 TI:T(1+K3:&2)7

We fitted f(T,0) = a + barctan(c(T — d)) to xZ(T,0) data for a 48 x 12 lattice
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Taylor expanding a (shifting) sigmoid

e The Taylor expansion seems to have problems reproducing the original function (left)

e Quite suggestive comparison with actual Taylor-expanded lattice data (right)
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e Problems at T slightly larger than 7). = influence from structure in x§ and yZ



Determine x,

II.

I1I1.

IV.

. Directly determine x3(7T') at fip = 0 from the previous relation

From our imaginary- i simulations (fig = fis = 0) we calculate:

T T ) )
T = ria(T) + ka(T) fiy + O(fip) = T(T)
B

Calculate II(T, N., ii%) for jig = inm/8 and N, = 10,12, 16
B

Perform a combined fit of the fi% and 1/N? dependence of II(T) at each temperature,
yielding a continuum estimate for the coeflicients

= The O(1) and O(1%) coefficients of the fit are k(T and k4 (T
B




Determine x,

The procedure, visualized:
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Determine x,

The procedure, visualized:
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Determine x,

The procedure, visualized:
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Determine x,

The procedure, visualized:
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Determine x,

The procedure, visualized:
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Determine x,

The procedure, visualized:
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Thermodynamics at finite (real) up

e We also check the results without the inclusion of k4(T) (darker shades)
e Including k4(T") only results in added error, but does not “move” the results

— Good convergence
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