## QCD equation of state with improved precision

## from lattice simulations

Paolo Parotto, Pennsylvania State University
September 5, 2023
Quark Matter 2023, Houston, TX $\odot$


## PennState

Wuppertal-Budapest:
S. Borsányi, Z. Fodor, J. N. Guenther, R. Kara, A. Pásztor, C. Ratti, K. K. Szabó

[^0]
## The equation of state of QCD

From a combination of approaches (experiment, models, lattice QCD calculations, ...), we have some knowledge of the QCD phase diagram

- Ordinary nuclear matter at $T \simeq 0$ and $\mu_{B} \simeq 922 \mathrm{MeV}$
- Deconfinement transition at $\mu_{B}=0$ is a smooth crossover at $T \simeq 155-160 \mathrm{MeV}$
- Transition line at finite $\mu_{B}$ is known to some precision
- Expansion(s) up to $\mu_{B} / T \simeq 2-3.5$
- Critical point? Exotic phases?


The equation of state (EoS) of QCD is invaluable.
Knowing it would mean we can really draw the phase diagram of QCD.

## The equation of state of QCD

- Highly demanded in heavy-ion collisions community, e.g. for hydrodynamics
- Lattice QCD is the most robust tool to determine QCD thermodynamics
- Known at $\mu_{B}=0$ to high precision for a few years now (continuum limit, physical quark masses) $\longrightarrow$ Agreement between different calculations (2013-2014)

From grancanonical partition function $\mathcal{Z}$

* Pressure: $p=-k_{B} T \frac{\partial \ln \mathcal{Z}}{\partial V}$
* Entropy density: $s=\left(\frac{\partial p}{\partial T}\right)_{\mu_{i}}$
* Charge densities: $n_{i}=\left(\frac{\partial p}{\partial \mu_{i}}\right)_{T, \mu_{j \neq i}}$
* Energy density: $\epsilon=T s-p+\sum_{i} \mu_{i} n_{i}$
* More (Fluctuations, etc...)



## Finite density: the sign/complex action problem

Euclidean path integrals on the lattice are calculated with MC methods using importance sampling, interpreting the factor $\operatorname{det} M[U] e^{-S_{G}[U]}$ as the Boltzmann weight for the configuration $U$

$$
\begin{aligned}
Z(V, T, \mu) & =\int \mathcal{D} U \mathcal{D} \psi \mathcal{D} \bar{\psi} e^{-S_{F}(U, \psi, \bar{\psi})-S_{G}(U)} \\
& =\int \mathcal{D} U \operatorname{det} M(U) e^{-S_{G}(U)}
\end{aligned}
$$

- If there is particle-antiparticle-symmetry $(\mu=0) \operatorname{det} M(U)$ is real
- For real chemical potential $\left(\mu^{2}>0\right) \rightarrow \operatorname{det} M(U)$ is complex (complex action problem) and has wildly oscillating phase (sign problem)
$\Rightarrow$ It cannot serve as a statistical weight
- For purely imaginary chemical potential $\left(\mu^{2}<0\right) \rightarrow \operatorname{det} M(U)$ is real again, simulations can be made!


## Alternatives: Taylor, analytic continuation, reweighting

Taylor expansion (1D) Bollweg+ '22


Alternative expansion (2D) Borsanyi+ '21, '22


Approximate reweighting Mondal+ '21


Reweighting Borsanyi+ '22, C. H. Wong's talk


## Motivation: finite $\mu_{B}$ vs zero $\mu_{B}$ equation of state

As just seen, in recent years a great deal of attention has been given to means to determine the equation of state at finite chemical potential, with great progress (see A. Pásztor's plenary)

## However:

i. New results for the equation of state at $\mu_{B}=0$ have been produced, but focus is now on cosmology (Borsányi+ ' ${ }^{16}$, Bazavov+ ${ }^{\prime} \mathbf{1 7}$ ). Around $T_{c}$ no updates in $\sim 10$ years
ii. No matter what method is used to extrapolate or directly simulate at finite $\hat{\mu}_{B}$, the equation of state at $\mu_{B}=0$ is always needed
iii. Except for large-ish $\mu_{B} / T \gtrsim 2-2.5$, the equation of state at $\mu_{B}=0$ is (was) the main source of uncertainty
iv. LHC physics ( $\mu_{B} \simeq 0$ ) is getting more and more precise

Our goal: dramatically reduce the uncertainty on the equation of state at $\mu_{B}=0$

## Equation of state from the lattice

The pressure cannot be determined directly (not a derivative of $\ln Z$ wrt to a parameter), but via an integral of the trace anomaly $I(T)$ :

$$
\frac{p(T)}{T^{4}}=\frac{p\left(T_{0}\right)}{T_{0}^{4}}+\int_{T_{0}}^{T} \frac{d T^{\prime}}{T^{\prime}} \frac{I\left(T^{\prime}\right)}{T^{\prime 4}}
$$

where the trace anomaly $I(T)$ can be determined directly on the lattice:

$$
\frac{I(T)}{T^{4}}=N_{\tau}^{4}(T>0-T=0)
$$

but needs renormalization, which means (a lot of) simulations at $T=0$ are needed


## I. Pressure constant

We calculate the integration constant $\frac{p\left(T_{0}\right)}{T_{0}^{4}}$ at a chosen $T_{0}=185 \mathrm{MeV}$.

The pressure is determined as an integral in the quark masses down from infinity (where $p=0$ ):

$$
\begin{aligned}
\frac{p\left(T_{0}\right)}{T_{0}^{4}}= & \int_{m_{s}}^{m_{l}} d m_{2}\langle\bar{\psi} \psi\rangle_{R, 2}\left(m_{2}\right) \\
& +\int_{\infty}^{m_{s}} d m_{3}\langle\bar{\psi} \psi\rangle_{R, 3}\left(m_{3}\right)
\end{aligned}
$$

We first integrate in the two light flavours up to $m_{s}$, then the three flavours up to infinity by fitting an exponential.


Note: the chiral condensates $\langle\bar{\psi} \psi\rangle_{R, i}$ are the renormalized ones

## I. Pressure constant

We calculate the integration constant with two settings of the scale, with and without applying the tree level improvement on the observables $\rightarrow 4 \mathrm{x}$ systematics


For the first time, we have results for up to $N_{t}=16$ which allow us to discard $N_{t}=8$ in the continuum extrapolation. $\Rightarrow \sim 2 \mathrm{x}$ improvement in uncertainty

## II. Trace anomaly

We determine on our lattices $32^{3} \times 8,40^{3} \times 10,48^{3} \times 12,64^{3} \times 16$ the trace anomaly:

then perform a global continuum extrapolation + spline fit in $T$.

## Equation of state at $\hat{\mu}_{B}=0$

Now we have both ingredients to determine the equation of state at $\mu_{B}=0$, as shown previously:

$$
\frac{p(T)}{T^{4}}=\frac{p\left(T_{0}\right)}{T_{0}^{4}}+\int_{T_{0}}^{T} \frac{d T^{\prime}}{T^{\prime}} \frac{I\left(T^{\prime}\right)}{T^{\prime}}
$$

From the pressure, the other quantities follow. At $\mu_{B}=0$, normalized quantities $\hat{O}(T)$ :

$$
\begin{aligned}
\hat{s} & =4 \hat{p}(T)+T \frac{d \hat{p}(T)}{d T} \\
\hat{\epsilon}(T) & =\hat{s}(T)-\hat{p}(T) \\
c_{s}^{2}(T) & =\frac{\hat{I}(T)+4 \hat{p}(T)}{7 \hat{I}(T)+12 \hat{p}(T)+T \frac{d \hat{I}(T)}{d T}}
\end{aligned}
$$

## Equation of state at $\hat{\mu}_{B}=0$

We can compare the resulting equation of state at $\mu_{B}=0$ to our previous result from 2014 Borsányi+ ' 14



Note: full systematics analysis still in the making, more statistics coming at $N_{\tau}=16$

## Equation of state at finite $\hat{\mu}_{B}$

We get the equation of state at finite $\mu_{B}$ with our expansion scheme Borsanyi+ ${ }^{\mathbf{2}} \mathbf{2 1},{ }^{\prime} \mathbf{2 2}$.
Here pressure and entropy density up to $\hat{\mu}_{B}=3.5$ for $\mu_{Q}=\mu_{S}=0$ :



A substantial improvement in the error is seen up to $\mu_{B} / T \simeq 2-2.5$

## Equation of state at finite $\hat{\mu}_{B}$

We get the equation of state at finite $\mu_{B}$ with our expansion scheme Borsanyi+ ${ }^{\mathbf{2}} \mathbf{2 1},{ }^{\prime} \mathbf{2 2}$.
Here pressure and entropy density up to $\hat{\mu}_{B}=3.5$ for $\mu_{Q}=n_{S}=0$ :



A substantial improvement in the error is seen up to $\mu_{B} / T \simeq 2-2.5$

## Equation of state at finite $\hat{\mu}_{B}$ : isentropes

We now have isentropic lines at very large $\mu_{B}$ with small errors $\Rightarrow$ no critical lensing


- The QCD equation of state at zero and finite chemical potential is highly demanded in the heavy-ion collisions community, e.g. for hydrodynamic simulations
- Regardless of the method used to calculate the equation of state at finite $\mu_{B}$, its $\mu_{B}=0$ determination is necessary and independent
- Thanks to our sizeable zero-T program and increased finite-T statistics, we reached unprecedented precision in the zero-density equation of state
- The precision is also increased at finite $\mu_{B}$, up to $\mu_{B} / T \simeq 2-2.5$
- The QCD equation of state at zero and finite chemical potential is highly demanded in the heavy-ion collisions community, e.g. for hydrodynamic simulations
- Regardless of the method used to calculate the equation of state at finite $\mu_{B}$, its $\mu_{B}=0$ determination is necessary and independent
- Thanks to our sizeable zero-T program and increased finite-T statistics, we reached unprecedented precision in the zero-density equation of state
- The precision is also increased at finite $\mu_{B}$, up to $\mu_{B} / T \simeq 2-2.5$


## THANK YOU!

BACKUP

## Equation of state at finite $\hat{\mu}_{B}$

Energy density up to $\hat{\mu}_{B}=3.5$ with $\mu_{S}=0$ and $n_{S}=0$



## Equation of state from the lattice

Pressure is not determined directly:

$$
\frac{p(T)}{T^{4}}=\frac{p\left(T_{0}\right)}{T_{0}^{4}}+\int_{T_{0}}^{T} \frac{d T^{\prime}}{T^{\prime}} \frac{I\left(T^{\prime}\right)}{T^{\prime 4}}
$$

Trace anomaly is determined directly on the lattice

$$
\frac{I(T)}{T^{4}} \frac{d T}{T}=N_{\tau}^{4}\left(d \beta\left\langle-s_{G}\right\rangle_{R}+\sum_{f} d m_{f}\left\langle\bar{\psi}_{f} \psi_{f}\right\rangle_{R}\right)
$$

with gauge coupling $\beta=6 / g^{2}$ and fermion masses $m_{f}$.
The gauge action $\left\langle-s_{G}\right\rangle$ and chiral condensates $\left\langle\bar{\psi}_{f} \psi_{f}\right\rangle$ require renormalization:

$$
\begin{aligned}
\left\langle-s_{G}\right\rangle_{R} & =\left\langle-s_{G}\right\rangle_{T}-\left\langle-s_{G}\right\rangle_{0} \\
\left\langle\bar{\psi}_{f} \psi_{f}\right\rangle_{R} & =\left\langle\bar{\psi}_{f} \psi_{f}\right\rangle_{T}-\left\langle\bar{\psi}_{f} \psi_{f}\right\rangle_{0}
\end{aligned}
$$

## An alternative approach

From simulations at imaginary $\mu_{B}$ we observe that $\chi_{1}^{B}\left(T, \hat{\mu}_{B}\right)$ at (imaginary) $\hat{\mu}_{B}$ appears to be differing from $\chi_{2}^{B}(T, 0)$ mostly by a rescaling of $T$ :

$$
\frac{\chi_{1}^{B}\left(T, \hat{\mu}_{B}\right)}{\hat{\mu}_{B}}=\chi_{2}^{B}\left(T^{\prime}, 0\right), \quad T^{\prime}=T\left(1+\kappa \hat{\mu}_{B}^{2}\right)
$$




## Lattice QCD at finite $\mu_{B}$ - Taylor coefficients

- Fluctuations of baryon number are the Taylor expansion coefficients of the pressure

$$
\chi_{i j k}^{B Q S}(T)=\left.\frac{\partial^{i+j+k} p / T^{4}}{\partial \hat{\mu}_{B}^{i} \partial \hat{\mu}_{Q}^{j} \partial \hat{\mu}_{S}^{k}}\right|_{\vec{\mu}=0}
$$




- Signal extraction is increasingly difficult with higher orders, especially in the transition region
- Higher order coefficients present a more complicated structure




## Taylor expanding a (shifting) sigmoid

Assume we have a sigmoid function $f(T)$ which shifts with $\hat{\mu}$, with a simple $T$-independent shifting parameter $\kappa$. How does Taylor cope with it?

$$
f(T, \hat{\mu})=f\left(\Gamma^{\prime}, 0\right), \quad \Gamma^{\prime}=T\left(1+\kappa \hat{\mu}^{2}\right)
$$

We fitted $f(T, 0)=a+b \arctan (c(T-d))$ to $\chi_{2}^{B}(T, 0)$ data for a $48 \times 12$ lattice




## Taylor expanding a (shifting) sigmoid

- The Taylor expansion seems to have problems reproducing the original function (left)
- Quite suggestive comparison with actual Taylor-expanded lattice data (right)


- Problems at $T$ slightly larger than $T_{p c} \Rightarrow$ influence from structure in $\chi_{6}^{B}$ and $\chi_{8}^{B}$


## Determine $\kappa_{n}$

I. Directly determine $\kappa_{2}(T)$ at $\hat{\mu}_{B}=0$ from the previous relation
II. From our imaginary- $\hat{\mu}_{B}$ simulations $\left(\hat{\mu}_{Q}=\hat{\mu}_{S}=0\right)$ we calculate:

$$
\frac{T^{\prime}-T}{T \hat{\mu}_{B}^{2}}=\kappa_{2}(T)+\kappa_{4}(T) \hat{\mu}_{B}^{2}+\mathcal{O}\left(\hat{\mu}_{B}^{4}\right)=\Pi(T)
$$

III. Calculate $\Pi\left(T, N_{\tau}, \hat{\mu}_{B}^{2}\right)$ for $\hat{\mu}_{B}=i n \pi / 8$ and $N_{\tau}=10,12,16$
IV. Perform a combined fit of the $\hat{\mu}_{B}^{2}$ and $1 / N_{\tau}^{2}$ dependence of $\Pi(T)$ at each temperature, yielding a continuum estimate for the coefficients

$$
\Rightarrow \text { The } \mathcal{O}(1) \text { and } \mathcal{O}\left(\hat{\mu}_{B}^{2}\right) \text { coefficients of the fit are } \kappa_{2}(T) \text { and } \kappa_{4}(T)
$$

## Determine $\kappa_{n}$

The procedure, visualized:


## Determine $\kappa_{n}$

The procedure, visualized:


Spline fit both at $\hat{\mu}_{B}=0$ and $\hat{\mu}_{B} \neq 0$

## Determine $\kappa_{n}$

The procedure, visualized:


Spline fit both at $\hat{\mu}_{B}=0$ and $\hat{\mu}_{B} \neq 0$, then determine $T-T^{\prime}$ (horizontal segments)

## Determine $\kappa_{n}$

The procedure, visualized:


Spline fit both at $\hat{\mu}_{B}=0$ and $\hat{\mu}_{B} \neq 0$, then determine $T-T^{\prime}$ (horizontal segments)

## Determine $\kappa_{n}$

The procedure, visualized:


Spline fit both at $\hat{\mu}_{B}=0$ and $\hat{\mu}_{B} \neq 0$, then determine $T-T^{\prime}$ (horizontal segments)

## Determine $\kappa_{n}$

The procedure, visualized:


Spline fit both at $\hat{\mu}_{B}=0$ and $\hat{\mu}_{B} \neq 0$, then determine $T-T^{\prime}$ (horizontal segments)

## Thermodynamics at finite (real) $\mu_{B}$

- We also check the results without the inclusion of $\kappa_{4}(T)$ (darker shades)
- Including $\kappa_{4}(T)$ only results in added error, but does not "move" the results
$\longrightarrow$ Good convergence




[^0]:    Note: references in the talk are links to papers

