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The equation of state of QCD

From a combination of approaches (experiment, models, lattice QCD calculations, ...),

we have some knowledge of the QCD phase diagram

• Ordinary nuclear matter at T ' 0 and

µB ' 922 MeV

• Deconfinement transition at µB = 0 is a

smooth crossover at T ' 155− 160 MeV

• Transition line at finite µB is known to some

precision

• Expansion(s) up to µB/T ' 2− 3.5

• Critical point? Exotic phases?

The equation of state (EoS) of QCD is invaluable.

Knowing it would mean we can really draw the phase diagram of QCD.
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The equation of state of QCD

• Highly demanded in heavy-ion collisions community, e.g. for hydrodynamics

• Lattice QCD is the most robust tool to determine QCD thermodynamics

• Known at µB = 0 to high precision for a few years now (continuum limit, physical

quark masses) −→ Agreement between different calculations (2013-2014)

From grancanonical partition function Z

∗ Pressure: p = −kBT ∂ lnZ
∂V

∗ Entropy density: s =
(
∂p
∂T

)
µi

∗ Charge densities: ni =
(
∂p
∂µi

)
T,µj 6=i

∗ Energy density: ε = Ts− p+
∑
i µini

∗ More (Fluctuations, etc...)

WB: Borsányi+ ’13, HotQCD: Bazavov+ ’14
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https://arxiv.org/pdf/1407.6387.pdf


Finite density: the sign/complex action problem

Euclidean path integrals on the lattice are calculated with MC methods using importance

sampling, interpreting the factor detM [U ] e−SG[U ] as the Boltzmann weight for the

configuration U

Z(V, T, µ) =

∫
DUDψDψ̄ e−SF (U,ψ,ψ̄)−SG(U)

=

∫
DU detM(U)e−SG(U)

• If there is particle-antiparticle-symmetry (µ = 0) detM(U) is real

• For real chemical potential (µ2 > 0) → detM(U) is complex (complex action

problem) and has wildly oscillating phase (sign problem)

⇒ It cannot serve as a statistical weight

• For purely imaginary chemical potential (µ2 < 0) → detM(U) is real again,

simulations can be made!
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Alternatives: Taylor, analytic continuation, reweighting

Taylor expansion (1D) Bollweg+ ’22 Approximate reweighting Mondal+ ’21
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Alternative expansion (2D) Borsanyi+ ’21, ’22 Reweighting Borsanyi+ ’22, C. H. Wong’s talk
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https://arxiv.org/pdf/2212.09043.pdf
https://arxiv.org/pdf/2106.03165.pdf
https://arxiv.org/pdf/2102.06660.pdf
https://arxiv.org/pdf/2202.05574.pdf
https://arxiv.org/pdf/2208.05398.pdf
https://indico.cern.ch/event/1139644/contributions/5453490/


Motivation: finite µB vs zero µB equation of state

As just seen, in recent years a great deal of attention has been given to means to

determine the equation of state at finite chemical potential, with great progress

(see A. Pásztor’s plenary)

However:

i. New results for the equation of state at µB = 0 have been produced, but focus is now

on cosmology (Borsányi+ ’16, Bazavov+ ’17). Around Tc no updates in ∼ 10 years

ii. No matter what method is used to extrapolate or directly simulate at finite µ̂B ,

the equation of state at µB = 0 is always needed

iii. Except for large-ish µB/T & 2− 2.5, the equation of state at µB = 0 is (was) the main

source of uncertainty

iv. LHC physics (µB ' 0) is getting more and more precise

Our goal: dramatically reduce the uncertainty on the equation of state at µB = 0
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https://indico.cern.ch/event/1139644/contributions/5343987/
https://arxiv.org/pdf/1606.07494.pdf
https://arxiv.org/pdf/1710.05024.pdf


Equation of state from the lattice

The pressure cannot be determined directly (not a derivative of lnZ wrt to a parameter),

but via an integral of the trace anomaly I(T ):

p(T )

T 4
=
p(T0)

T 4
0

+

∫ T

T0

dT ′

T ′
I(T ′)

T ′4

where the trace anomaly I(T ) can be determined directly on the lattice:

I(T )

T 4
= N4

τ

(
T > 0 − T = 0

)
but needs renormalization, which means (a lot of) simulations at T = 0 are needed
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I. Pressure constant

We calculate the integration constantp(T0)
T 4
0

at a chosen T0 = 185 MeV.

The pressure is determined as an integral in the

quark masses down from infinity (where p = 0):

p(T0)

T 4
0

=

∫ ml

ms

dm2

〈
ψ̄ψ
〉
R,2 (m2)

+

∫ ms

∞
dm3

〈
ψ̄ψ
〉
R,3 (m3)

We first integrate in the two light flavours up

to ms, then the three flavours up to infinity by

fitting an exponential.  0
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I. Pressure constant

We calculate the integration constant with two settings of the scale, with and without

applying the tree level improvement on the observables → 4x systematics
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For the first time, we have results for up to Nt = 16 which allow us to discard Nt = 8 in
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II. Trace anomaly

We determine on our lattices 323×8, 403×10, 483×12, 643×16 the trace anomaly:
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Equation of state at µ̂B = 0

Now we have both ingredients to determine the equation of state at µB = 0, as shown

previously:

p(T )

T 4
=
p(T0)

T 4
0

+

∫ T

T0

dT ′

T ′
I(T ′)

T ′4

From the pressure, the other quantities follow. At µB = 0, normalized quantities Ô(T ):

ŝ = 4p̂(T ) + T
dp̂(T )

dT

ε̂(T ) = ŝ(T )− p̂(T )

c2s(T ) =
Î(T ) + 4p̂(T )

7Î(T ) + 12p̂(T ) + T dÎ(T )
dT

10/14



Equation of state at µ̂B = 0

We can compare the resulting equation of state at µB = 0 to our previous result from 2014

Borsányi+ ’14
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Equation of state at finite µ̂B

We get the equation of state at finite µB with our expansion scheme Borsanyi+ ’21, ’22.

Here pressure and entropy density up to µ̂B = 3.5 for µQ = µS = 0:
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https://arxiv.org/pdf/2102.06660.pdf
https://arxiv.org/pdf/2202.05574.pdf


Equation of state at finite µ̂B

We get the equation of state at finite µB with our expansion scheme Borsanyi+ ’21, ’22.

Here pressure and entropy density up to µ̂B = 3.5 for µQ = nS = 0:
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Equation of state at finite µ̂B: isentropes

We now have isentropic lines at very large µB with small errors ⇒ no critical lensing
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Summary

• The QCD equation of state at zero and finite chemical potential is highly demanded

in the heavy-ion collisions community, e.g. for hydrodynamic simulations

• Regardless of the method used to calculate the equation of state at finite µB , its

µB = 0 determination is necessary and independent

• Thanks to our sizeable zero-T program and increased finite-T statistics, we reached

unprecedented precision in the zero-density equation of state

• The precision is also increased at finite µB , up to µB/T ' 2− 2.5

THANK YOU!
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in the heavy-ion collisions community, e.g. for hydrodynamic simulations

• Regardless of the method used to calculate the equation of state at finite µB , its

µB = 0 determination is necessary and independent

• Thanks to our sizeable zero-T program and increased finite-T statistics, we reached

unprecedented precision in the zero-density equation of state
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Equation of state at finite µ̂B

Energy density up to µ̂B = 3.5 with µS = 0 and nS = 0
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Equation of state from the lattice

Pressure is not determined directly:

p(T )

T 4
=
p(T0)

T 4
0

+

∫ T

T0

dT ′

T ′
I(T ′)

T ′4

Trace anomaly is determined directly on the lattice

I(T )

T 4

dT

T
= N4

τ

 dβ 〈−sG〉R +
∑
f

dmf

〈
ψ̄fψf

〉
R


with gauge coupling β = 6/g2 and fermion masses mf .

The gauge action 〈−sG〉 and chiral condensates
〈
ψ̄fψf

〉
require renormalization:

〈−sG〉R = 〈−sG〉T − 〈−sG〉0〈
ψ̄fψf

〉
R

=
〈
ψ̄fψf

〉
T
−
〈
ψ̄fψf

〉
0



An alternative approach

From simulations at imaginary µB we observe that χB1 (T, µ̂B) at (imaginary) µ̂B appears

to be differing from χB2 (T, 0) mostly by a rescaling of T :

χB1 (T, µ̂B)

µ̂B
= χB2 (T ′, 0) , T ′ = T

(
1 + κ µ̂2

B

)
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Lattice QCD at finite µB - Taylor coefficients

• Fluctuations of baryon number are

the Taylor expansion coefficients of

the pressure

χBQSijk (T ) =
∂i+j+kp/T 4

∂µ̂iB∂µ̂
j
Q∂µ̂

k
S

∣∣∣∣∣
~µ=0

• Signal extraction is increasingly

difficult with higher orders, especially

in the transition region

• Higher order coefficients present a

more complicated structure
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WB: Borsányi et al. JHEP 10 (2018) 205;

(also e.g., HotQCD: Bazavov et al. PRD101 (2020), 074502)



Taylor expanding a (shifting) sigmoid

Assume we have a sigmoid function f(T ) which shifts with µ̂, with a simple

T -independent shifting parameter κ. How does Taylor cope with it?

f(T, µ̂) = f(T ′, 0) , T ′ = T (1 + κ µ̂2) ,

We fitted f(T, 0) = a+ b arctan(c(T − d)) to χB2 (T, 0) data for a 48× 12 lattice
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Taylor expanding a (shifting) sigmoid

• The Taylor expansion seems to have problems reproducing the original function (left)

• Quite suggestive comparison with actual Taylor-expanded lattice data (right)
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Determine κn

I. Directly determine κ2(T ) at µ̂B = 0 from the previous relation

II. From our imaginary- µ̂B simulations ( µ̂Q = µ̂S = 0) we calculate:

T ′ − T
T µ̂2

B

= κ2(T ) + κ4(T ) µ̂2
B +O( µ̂4

B) = Π(T )

III. Calculate Π(T,Nτ , µ̂
2
B) for µ̂B = inπ/8 and Nτ = 10, 12, 16

IV. Perform a combined fit of the µ̂2
B and 1/N2

τ dependence of Π(T ) at each temperature,

yielding a continuum estimate for the coefficients

⇒ The O(1) and O( µ̂2
B) coefficients of the fit are κ2(T ) and κ4(T )



Determine κn

The procedure, visualized:
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Determine κn

The procedure, visualized:
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Determine κn

The procedure, visualized:
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Determine κn

The procedure, visualized:
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Determine κn

The procedure, visualized:
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Determine κn

The procedure, visualized:
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Thermodynamics at finite (real) µB

• We also check the results without the inclusion of κ4(T ) (darker shades)

• Including κ4(T ) only results in added error, but does not “move” the results

−→ Good convergence
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